Spamworldpro Mini Shell
Spamworldpro


Server : Apache
System : Linux indy02.toastserver.com 3.10.0-962.3.2.lve1.5.85.el7.x86_64 #1 SMP Thu Apr 18 15:18:36 UTC 2024 x86_64
User : palandch ( 1163)
PHP Version : 7.1.33
Disable Function : NONE
Directory :  /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //opt/alt/python27/lib64/python2.7/site-packages/numpy/core/tests/test_multiarray.py
from __future__ import division, absolute_import, print_function

import collections
import tempfile
import sys
import shutil
import warnings
import operator
import io
import itertools
import ctypes
import os
if sys.version_info[0] >= 3:
    import builtins
else:
    import __builtin__ as builtins
from decimal import Decimal


import numpy as np
from numpy.compat import asbytes, getexception, strchar, unicode, sixu
from test_print import in_foreign_locale
from numpy.core.multiarray_tests import (
    test_neighborhood_iterator, test_neighborhood_iterator_oob,
    test_pydatamem_seteventhook_start, test_pydatamem_seteventhook_end,
    test_inplace_increment, get_buffer_info, test_as_c_array
    )
from numpy.testing import (
    TestCase, run_module_suite, assert_, assert_raises,
    assert_equal, assert_almost_equal, assert_array_equal,
    assert_array_almost_equal, assert_allclose,
    assert_array_less, runstring, dec, SkipTest
    )

# Need to test an object that does not fully implement math interface
from datetime import timedelta


if sys.version_info[:2] > (3, 2):
    # In Python 3.3 the representation of empty shape, strides and sub-offsets
    # is an empty tuple instead of None.
    # http://docs.python.org/dev/whatsnew/3.3.html#api-changes
    EMPTY = ()
else:
    EMPTY = None


class TestFlags(TestCase):
    def setUp(self):
        self.a = np.arange(10)

    def test_writeable(self):
        mydict = locals()
        self.a.flags.writeable = False
        self.assertRaises(ValueError, runstring, 'self.a[0] = 3', mydict)
        self.assertRaises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict)
        self.a.flags.writeable = True
        self.a[0] = 5
        self.a[0] = 0

    def test_otherflags(self):
        assert_equal(self.a.flags.carray, True)
        assert_equal(self.a.flags.farray, False)
        assert_equal(self.a.flags.behaved, True)
        assert_equal(self.a.flags.fnc, False)
        assert_equal(self.a.flags.forc, True)
        assert_equal(self.a.flags.owndata, True)
        assert_equal(self.a.flags.writeable, True)
        assert_equal(self.a.flags.aligned, True)
        assert_equal(self.a.flags.updateifcopy, False)

    def test_string_align(self):
        a = np.zeros(4, dtype=np.dtype('|S4'))
        assert_(a.flags.aligned)
        # not power of two are accessed byte-wise and thus considered aligned
        a = np.zeros(5, dtype=np.dtype('|S4'))
        assert_(a.flags.aligned)

    def test_void_align(self):
        a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")]))
        assert_(a.flags.aligned)


class TestHash(TestCase):
    # see #3793
    def test_int(self):
        for st, ut, s in [(np.int8, np.uint8, 8),
                          (np.int16, np.uint16, 16),
                          (np.int32, np.uint32, 32),
                          (np.int64, np.uint64, 64)]:
            for i in range(1, s):
                assert_equal(hash(st(-2**i)), hash(-2**i),
                             err_msg="%r: -2**%d" % (st, i))
                assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (st, i - 1))
                assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (st, i))

                i = max(i - 1, 1)
                assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
                             err_msg="%r: 2**%d" % (ut, i - 1))
                assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
                             err_msg="%r: 2**%d - 1" % (ut, i))


class TestAttributes(TestCase):
    def setUp(self):
        self.one = np.arange(10)
        self.two = np.arange(20).reshape(4, 5)
        self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6)

    def test_attributes(self):
        assert_equal(self.one.shape, (10,))
        assert_equal(self.two.shape, (4, 5))
        assert_equal(self.three.shape, (2, 5, 6))
        self.three.shape = (10, 3, 2)
        assert_equal(self.three.shape, (10, 3, 2))
        self.three.shape = (2, 5, 6)
        assert_equal(self.one.strides, (self.one.itemsize,))
        num = self.two.itemsize
        assert_equal(self.two.strides, (5*num, num))
        num = self.three.itemsize
        assert_equal(self.three.strides, (30*num, 6*num, num))
        assert_equal(self.one.ndim, 1)
        assert_equal(self.two.ndim, 2)
        assert_equal(self.three.ndim, 3)
        num = self.two.itemsize
        assert_equal(self.two.size, 20)
        assert_equal(self.two.nbytes, 20*num)
        assert_equal(self.two.itemsize, self.two.dtype.itemsize)
        assert_equal(self.two.base, np.arange(20))

    def test_dtypeattr(self):
        assert_equal(self.one.dtype, np.dtype(np.int_))
        assert_equal(self.three.dtype, np.dtype(np.float_))
        assert_equal(self.one.dtype.char, 'l')
        assert_equal(self.three.dtype.char, 'd')
        self.assertTrue(self.three.dtype.str[0] in '<>')
        assert_equal(self.one.dtype.str[1], 'i')
        assert_equal(self.three.dtype.str[1], 'f')

    def test_int_subclassing(self):
        # Regression test for https://github.com/numpy/numpy/pull/3526

        numpy_int = np.int_(0)

        if sys.version_info[0] >= 3:
            # On Py3k int_ should not inherit from int, because it's not
            # fixed-width anymore
            assert_equal(isinstance(numpy_int, int), False)
        else:
            # Otherwise, it should inherit from int...
            assert_equal(isinstance(numpy_int, int), True)

            # ... and fast-path checks on C-API level should also work
            from numpy.core.multiarray_tests import test_int_subclass
            assert_equal(test_int_subclass(numpy_int), True)

    def test_stridesattr(self):
        x = self.one

        def make_array(size, offset, strides):
            return np.ndarray(size, buffer=x, dtype=int,
                              offset=offset*x.itemsize,
                              strides=strides*x.itemsize)

        assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
        self.assertRaises(ValueError, make_array, 4, 4, -2)
        self.assertRaises(ValueError, make_array, 4, 2, -1)
        self.assertRaises(ValueError, make_array, 8, 3, 1)
        assert_equal(make_array(8, 3, 0), np.array([3]*8))
        # Check behavior reported in gh-2503:
        self.assertRaises(ValueError, make_array, (2, 3), 5, np.array([-2, -3]))
        make_array(0, 0, 10)

    def test_set_stridesattr(self):
        x = self.one

        def make_array(size, offset, strides):
            try:
                r = np.ndarray([size], dtype=int, buffer=x,
                               offset=offset*x.itemsize)
            except:
                raise RuntimeError(getexception())
            r.strides = strides = strides*x.itemsize
            return r

        assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
        assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9]))
        self.assertRaises(ValueError, make_array, 4, 4, -2)
        self.assertRaises(ValueError, make_array, 4, 2, -1)
        self.assertRaises(RuntimeError, make_array, 8, 3, 1)
        # Check that the true extent of the array is used.
        # Test relies on as_strided base not exposing a buffer.
        x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0))

        def set_strides(arr, strides):
            arr.strides = strides

        self.assertRaises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize))

        # Test for offset calculations:
        x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1],
                                                    shape=(10,), strides=(-1,))
        self.assertRaises(ValueError, set_strides, x[::-1], -1)
        a = x[::-1]
        a.strides = 1
        a[::2].strides = 2

    def test_fill(self):
        for t in "?bhilqpBHILQPfdgFDGO":
            x = np.empty((3, 2, 1), t)
            y = np.empty((3, 2, 1), t)
            x.fill(1)
            y[...] = 1
            assert_equal(x, y)

    def test_fill_max_uint64(self):
        x = np.empty((3, 2, 1), dtype=np.uint64)
        y = np.empty((3, 2, 1), dtype=np.uint64)
        value = 2**64 - 1
        y[...] = value
        x.fill(value)
        assert_array_equal(x, y)

    def test_fill_struct_array(self):
        # Filling from a scalar
        x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8')
        x.fill(x[0])
        assert_equal(x['f1'][1], x['f1'][0])
        # Filling from a tuple that can be converted
        # to a scalar
        x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')])
        x.fill((3.5, -2))
        assert_array_equal(x['a'], [3.5, 3.5])
        assert_array_equal(x['b'], [-2, -2])


class TestArrayConstruction(TestCase):
    def test_array(self):
        d = np.ones(6)
        r = np.array([d, d])
        assert_equal(r, np.ones((2, 6)))

        d = np.ones(6)
        tgt = np.ones((2, 6))
        r = np.array([d, d])
        assert_equal(r, tgt)
        tgt[1] = 2
        r = np.array([d, d + 1])
        assert_equal(r, tgt)

        d = np.ones(6)
        r = np.array([[d, d]])
        assert_equal(r, np.ones((1, 2, 6)))

        d = np.ones(6)
        r = np.array([[d, d], [d, d]])
        assert_equal(r, np.ones((2, 2, 6)))

        d = np.ones((6, 6))
        r = np.array([d, d])
        assert_equal(r, np.ones((2, 6, 6)))

        d = np.ones((6, ))
        r = np.array([[d, d + 1], d + 2])
        assert_equal(len(r), 2)
        assert_equal(r[0], [d, d + 1])
        assert_equal(r[1], d + 2)

        tgt = np.ones((2, 3), dtype=np.bool)
        tgt[0, 2] = False
        tgt[1, 0:2] = False
        r = np.array([[True, True, False], [False, False, True]])
        assert_equal(r, tgt)
        r = np.array([[True, False], [True, False], [False, True]])
        assert_equal(r, tgt.T)

    def test_array_empty(self):
        assert_raises(TypeError, np.array)

    def test_array_copy_false(self):
        d = np.array([1, 2, 3])
        e = np.array(d, copy=False)
        d[1] = 3
        assert_array_equal(e, [1, 3, 3])
        e = np.array(d, copy=False, order='F')
        d[1] = 4
        assert_array_equal(e, [1, 4, 3])
        e[2] = 7
        assert_array_equal(d, [1, 4, 7])

    def test_array_copy_true(self):
        d = np.array([[1,2,3], [1, 2, 3]])
        e = np.array(d, copy=True)
        d[0, 1] = 3
        e[0, 2] = -7
        assert_array_equal(e, [[1, 2, -7], [1, 2, 3]])
        assert_array_equal(d, [[1, 3, 3], [1, 2, 3]])
        e = np.array(d, copy=True, order='F')
        d[0, 1] = 5
        e[0, 2] = 7
        assert_array_equal(e, [[1, 3, 7], [1, 2, 3]])
        assert_array_equal(d, [[1, 5, 3], [1,2,3]])

    def test_array_cont(self):
        d = np.ones(10)[::2]
        assert_(np.ascontiguousarray(d).flags.c_contiguous)
        assert_(np.ascontiguousarray(d).flags.f_contiguous)
        assert_(np.asfortranarray(d).flags.c_contiguous)
        assert_(np.asfortranarray(d).flags.f_contiguous)
        d = np.ones((10, 10))[::2,::2]
        assert_(np.ascontiguousarray(d).flags.c_contiguous)
        assert_(np.asfortranarray(d).flags.f_contiguous)


class TestAssignment(TestCase):
    def test_assignment_broadcasting(self):
        a = np.arange(6).reshape(2, 3)

        # Broadcasting the input to the output
        a[...] = np.arange(3)
        assert_equal(a, [[0, 1, 2], [0, 1, 2]])
        a[...] = np.arange(2).reshape(2, 1)
        assert_equal(a, [[0, 0, 0], [1, 1, 1]])

        # For compatibility with <= 1.5, a limited version of broadcasting
        # the output to the input.
        #
        # This behavior is inconsistent with NumPy broadcasting
        # in general, because it only uses one of the two broadcasting
        # rules (adding a new "1" dimension to the left of the shape),
        # applied to the output instead of an input. In NumPy 2.0, this kind
        # of broadcasting assignment will likely be disallowed.
        a[...] = np.arange(6)[::-1].reshape(1, 2, 3)
        assert_equal(a, [[5, 4, 3], [2, 1, 0]])
        # The other type of broadcasting would require a reduction operation.

        def assign(a, b):
            a[...] = b

        assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3))

    def test_assignment_errors(self):
        # Address issue #2276
        class C:
            pass
        a = np.zeros(1)

        def assign(v):
            a[0] = v

        assert_raises((AttributeError, TypeError), assign, C())
        assert_raises(ValueError, assign, [1])


class TestDtypedescr(TestCase):
    def test_construction(self):
        d1 = np.dtype('i4')
        assert_equal(d1, np.dtype(np.int32))
        d2 = np.dtype('f8')
        assert_equal(d2, np.dtype(np.float64))

    def test_byteorders(self):
        self.assertNotEqual(np.dtype('<i4'), np.dtype('>i4'))
        self.assertNotEqual(np.dtype([('a', '<i4')]), np.dtype([('a', '>i4')]))


class TestZeroRank(TestCase):
    def setUp(self):
        self.d = np.array(0), np.array('x', object)

    def test_ellipsis_subscript(self):
        a, b = self.d
        self.assertEqual(a[...], 0)
        self.assertEqual(b[...], 'x')
        self.assertTrue(a[...].base is a)  # `a[...] is a` in numpy <1.9.
        self.assertTrue(b[...].base is b)  # `b[...] is b` in numpy <1.9.

    def test_empty_subscript(self):
        a, b = self.d
        self.assertEqual(a[()], 0)
        self.assertEqual(b[()], 'x')
        self.assertTrue(type(a[()]) is a.dtype.type)
        self.assertTrue(type(b[()]) is str)

    def test_invalid_subscript(self):
        a, b = self.d
        self.assertRaises(IndexError, lambda x: x[0], a)
        self.assertRaises(IndexError, lambda x: x[0], b)
        self.assertRaises(IndexError, lambda x: x[np.array([], int)], a)
        self.assertRaises(IndexError, lambda x: x[np.array([], int)], b)

    def test_ellipsis_subscript_assignment(self):
        a, b = self.d
        a[...] = 42
        self.assertEqual(a, 42)
        b[...] = ''
        self.assertEqual(b.item(), '')

    def test_empty_subscript_assignment(self):
        a, b = self.d
        a[()] = 42
        self.assertEqual(a, 42)
        b[()] = ''
        self.assertEqual(b.item(), '')

    def test_invalid_subscript_assignment(self):
        a, b = self.d

        def assign(x, i, v):
            x[i] = v

        self.assertRaises(IndexError, assign, a, 0, 42)
        self.assertRaises(IndexError, assign, b, 0, '')
        self.assertRaises(ValueError, assign, a, (), '')

    def test_newaxis(self):
        a, b = self.d
        self.assertEqual(a[np.newaxis].shape, (1,))
        self.assertEqual(a[..., np.newaxis].shape, (1,))
        self.assertEqual(a[np.newaxis, ...].shape, (1,))
        self.assertEqual(a[..., np.newaxis].shape, (1,))
        self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
        self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1))
        self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
        self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10)

    def test_invalid_newaxis(self):
        a, b = self.d

        def subscript(x, i):
            x[i]

        self.assertRaises(IndexError, subscript, a, (np.newaxis, 0))
        self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50)

    def test_constructor(self):
        x = np.ndarray(())
        x[()] = 5
        self.assertEqual(x[()], 5)
        y = np.ndarray((), buffer=x)
        y[()] = 6
        self.assertEqual(x[()], 6)

    def test_output(self):
        x = np.array(2)
        self.assertRaises(ValueError, np.add, x, [1], x)


class TestScalarIndexing(TestCase):
    def setUp(self):
        self.d = np.array([0, 1])[0]

    def test_ellipsis_subscript(self):
        a = self.d
        self.assertEqual(a[...], 0)
        self.assertEqual(a[...].shape, ())

    def test_empty_subscript(self):
        a = self.d
        self.assertEqual(a[()], 0)
        self.assertEqual(a[()].shape, ())

    def test_invalid_subscript(self):
        a = self.d
        self.assertRaises(IndexError, lambda x: x[0], a)
        self.assertRaises(IndexError, lambda x: x[np.array([], int)], a)

    def test_invalid_subscript_assignment(self):
        a = self.d

        def assign(x, i, v):
            x[i] = v

        self.assertRaises(TypeError, assign, a, 0, 42)

    def test_newaxis(self):
        a = self.d
        self.assertEqual(a[np.newaxis].shape, (1,))
        self.assertEqual(a[..., np.newaxis].shape, (1,))
        self.assertEqual(a[np.newaxis, ...].shape, (1,))
        self.assertEqual(a[..., np.newaxis].shape, (1,))
        self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
        self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1))
        self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
        self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10)

    def test_invalid_newaxis(self):
        a = self.d

        def subscript(x, i):
            x[i]

        self.assertRaises(IndexError, subscript, a, (np.newaxis, 0))
        self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50)

    def test_overlapping_assignment(self):
        # With positive strides
        a = np.arange(4)
        a[:-1] = a[1:]
        assert_equal(a, [1, 2, 3, 3])

        a = np.arange(4)
        a[1:] = a[:-1]
        assert_equal(a, [0, 0, 1, 2])

        # With positive and negative strides
        a = np.arange(4)
        a[:] = a[::-1]
        assert_equal(a, [3, 2, 1, 0])

        a = np.arange(6).reshape(2, 3)
        a[::-1,:] = a[:, ::-1]
        assert_equal(a, [[5, 4, 3], [2, 1, 0]])

        a = np.arange(6).reshape(2, 3)
        a[::-1, ::-1] = a[:, ::-1]
        assert_equal(a, [[3, 4, 5], [0, 1, 2]])

        # With just one element overlapping
        a = np.arange(5)
        a[:3] = a[2:]
        assert_equal(a, [2, 3, 4, 3, 4])

        a = np.arange(5)
        a[2:] = a[:3]
        assert_equal(a, [0, 1, 0, 1, 2])

        a = np.arange(5)
        a[2::-1] = a[2:]
        assert_equal(a, [4, 3, 2, 3, 4])

        a = np.arange(5)
        a[2:] = a[2::-1]
        assert_equal(a, [0, 1, 2, 1, 0])

        a = np.arange(5)
        a[2::-1] = a[:1:-1]
        assert_equal(a, [2, 3, 4, 3, 4])

        a = np.arange(5)
        a[:1:-1] = a[2::-1]
        assert_equal(a, [0, 1, 0, 1, 2])


class TestCreation(TestCase):
    def test_from_attribute(self):
        class x(object):
            def __array__(self, dtype=None):
                pass

        self.assertRaises(ValueError, np.array, x())

    def test_from_string(self):
        types = np.typecodes['AllInteger'] + np.typecodes['Float']
        nstr = ['123', '123']
        result = np.array([123, 123], dtype=int)
        for type in types:
            msg = 'String conversion for %s' % type
            assert_equal(np.array(nstr, dtype=type), result, err_msg=msg)

    def test_void(self):
        arr = np.array([], dtype='V')
        assert_equal(arr.dtype.kind, 'V')

    def test_too_big_error(self):
        # 45341 is the smallest integer greater than sqrt(2**31 - 1).
        # 3037000500 is the smallest integer greater than sqrt(2**63 - 1).
        # We want to make sure that the square byte array with those dimensions
        # is too big on 32 or 64 bit systems respectively.
        if np.iinfo('intp').max == 2**31 - 1:
            shape = (46341, 46341)
        elif np.iinfo('intp').max == 2**63 - 1:
            shape = (3037000500, 3037000500)
        else:
            return
        assert_raises(ValueError, np.empty, shape, dtype=np.int8)
        assert_raises(ValueError, np.zeros, shape, dtype=np.int8)
        assert_raises(ValueError, np.ones, shape, dtype=np.int8)

    def test_zeros(self):
        types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
        for dt in types:
            d = np.zeros((13,), dtype=dt)
            assert_equal(np.count_nonzero(d), 0)
            # true for ieee floats
            assert_equal(d.sum(), 0)
            assert_(not d.any())

            d = np.zeros(2, dtype='(2,4)i4')
            assert_equal(np.count_nonzero(d), 0)
            assert_equal(d.sum(), 0)
            assert_(not d.any())

            d = np.zeros(2, dtype='4i4')
            assert_equal(np.count_nonzero(d), 0)
            assert_equal(d.sum(), 0)
            assert_(not d.any())

            d = np.zeros(2, dtype='(2,4)i4, (2,4)i4')
            assert_equal(np.count_nonzero(d), 0)

    @dec.slow
    def test_zeros_big(self):
        # test big array as they might be allocated different by the system
        types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
        for dt in types:
            d = np.zeros((30 * 1024**2,), dtype=dt)
            assert_(not d.any())
            # This test can fail on 32-bit systems due to insufficient
            # contiguous memory. Deallocating the previous array increases the
            # chance of success.
            del(d)

    def test_zeros_obj(self):
        # test initialization from PyLong(0)
        d = np.zeros((13,), dtype=object)
        assert_array_equal(d, [0] * 13)
        assert_equal(np.count_nonzero(d), 0)

    def test_zeros_obj_obj(self):
        d = np.zeros(10, dtype=[('k', object, 2)])
        assert_array_equal(d['k'], 0)

    def test_zeros_like_like_zeros(self):
        # test zeros_like returns the same as zeros
        for c in np.typecodes['All']:
            if c == 'V':
                continue
            d = np.zeros((3,3), dtype=c)
            assert_array_equal(np.zeros_like(d), d)
            assert_equal(np.zeros_like(d).dtype, d.dtype)
        # explicitly check some special cases
        d = np.zeros((3,3), dtype='S5')
        assert_array_equal(np.zeros_like(d), d)
        assert_equal(np.zeros_like(d).dtype, d.dtype)
        d = np.zeros((3,3), dtype='U5')
        assert_array_equal(np.zeros_like(d), d)
        assert_equal(np.zeros_like(d).dtype, d.dtype)

        d = np.zeros((3,3), dtype='<i4')
        assert_array_equal(np.zeros_like(d), d)
        assert_equal(np.zeros_like(d).dtype, d.dtype)
        d = np.zeros((3,3), dtype='>i4')
        assert_array_equal(np.zeros_like(d), d)
        assert_equal(np.zeros_like(d).dtype, d.dtype)

        d = np.zeros((3,3), dtype='<M8[s]')
        assert_array_equal(np.zeros_like(d), d)
        assert_equal(np.zeros_like(d).dtype, d.dtype)
        d = np.zeros((3,3), dtype='>M8[s]')
        assert_array_equal(np.zeros_like(d), d)
        assert_equal(np.zeros_like(d).dtype, d.dtype)

        d = np.zeros((3,3), dtype='f4,f4')
        assert_array_equal(np.zeros_like(d), d)
        assert_equal(np.zeros_like(d).dtype, d.dtype)

    def test_empty_unicode(self):
        # don't throw decode errors on garbage memory
        for i in range(5, 100, 5):
            d = np.empty(i, dtype='U')
            str(d)

    def test_sequence_non_homogenous(self):
        assert_equal(np.array([4, 2**80]).dtype, np.object)
        assert_equal(np.array([4, 2**80, 4]).dtype, np.object)
        assert_equal(np.array([2**80, 4]).dtype, np.object)
        assert_equal(np.array([2**80] * 3).dtype, np.object)
        assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, np.complex)
        assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, np.complex)
        assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, np.complex)

    @dec.skipif(sys.version_info[0] >= 3)
    def test_sequence_long(self):
        assert_equal(np.array([long(4), long(4)]).dtype, np.long)
        assert_equal(np.array([long(4), 2**80]).dtype, np.object)
        assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object)
        assert_equal(np.array([2**80, long(4)]).dtype, np.object)

    def test_non_sequence_sequence(self):
        """Should not segfault.

        Class Fail breaks the sequence protocol for new style classes, i.e.,
        those derived from object. Class Map is a mapping type indicated by
        raising a ValueError. At some point we may raise a warning instead
        of an error in the Fail case.

        """
        class Fail(object):
            def __len__(self):
                return 1

            def __getitem__(self, index):
                raise ValueError()

        class Map(object):
            def __len__(self):
                return 1

            def __getitem__(self, index):
                raise KeyError()

        a = np.array([Map()])
        assert_(a.shape == (1,))
        assert_(a.dtype == np.dtype(object))
        assert_raises(ValueError, np.array, [Fail()])

    def test_no_len_object_type(self):
        # gh-5100, want object array from iterable object without len()
        class Point2:
            def __init__(self):
                pass

            def __getitem__(self, ind):
                if ind in [0, 1]:
                    return ind
                else:
                    raise IndexError()
        d = np.array([Point2(), Point2(), Point2()])
        assert_equal(d.dtype, np.dtype(object))

    def test_false_len_sequence(self):
        # gh-7264, segfault for this example
        class C:
            def __getitem__(self, i):
                raise IndexError
            def __len__(self):
                return 42

        assert_raises(ValueError, np.array, C()) # segfault?

    def test_failed_len_sequence(self):
        # gh-7393
        class A(object):
            def __init__(self, data):
                self._data = data
            def __getitem__(self, item):
                return type(self)(self._data[item])
            def __len__(self):
                return len(self._data)

        # len(d) should give 3, but len(d[0]) will fail
        d = A([1,2,3])
        assert_equal(len(np.array(d)), 3)

    def test_array_too_big(self):
        # Test that array creation succeeds for arrays addressable by intp
        # on the byte level and fails for too large arrays.
        buf = np.zeros(100)

        max_bytes = np.iinfo(np.intp).max
        for dtype in ["intp", "S20", "b"]:
            dtype = np.dtype(dtype)
            itemsize = dtype.itemsize

            np.ndarray(buffer=buf, strides=(0,),
                       shape=(max_bytes//itemsize,), dtype=dtype)
            assert_raises(ValueError, np.ndarray, buffer=buf, strides=(0,),
                          shape=(max_bytes//itemsize + 1,), dtype=dtype)


class TestStructured(TestCase):
    def test_subarray_field_access(self):
        a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))])
        a['a'] = np.arange(60).reshape(3, 5, 2, 2)

        # Since the subarray is always in C-order, a transpose
        # does not swap the subarray:
        assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3))

        # In Fortran order, the subarray gets appended
        # like in all other cases, not prepended as a special case
        b = a.copy(order='F')
        assert_equal(a['a'].shape, b['a'].shape)
        assert_equal(a.T['a'].shape, a.T.copy()['a'].shape)

    def test_subarray_comparison(self):
        # Check that comparisons between record arrays with
        # multi-dimensional field types work properly
        a = np.rec.fromrecords(
            [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])],
            dtype=[('a', ('f4', 3)), ('b', np.object), ('c', ('i4', (2, 2)))])
        b = a.copy()
        assert_equal(a == b, [True, True])
        assert_equal(a != b, [False, False])
        b[1].b = 'c'
        assert_equal(a == b, [True, False])
        assert_equal(a != b, [False, True])
        for i in range(3):
            b[0].a = a[0].a
            b[0].a[i] = 5
            assert_equal(a == b, [False, False])
            assert_equal(a != b, [True, True])
        for i in range(2):
            for j in range(2):
                b = a.copy()
                b[0].c[i, j] = 10
                assert_equal(a == b, [False, True])
                assert_equal(a != b, [True, False])

        # Check that broadcasting with a subarray works
        a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')])
        b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')])
        assert_equal(a == b, [[True, True, False], [False, False, True]])
        assert_equal(b == a, [[True, True, False], [False, False, True]])
        a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))])
        b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))])
        assert_equal(a == b, [[True, True, False], [False, False, True]])
        assert_equal(b == a, [[True, True, False], [False, False, True]])
        a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))])
        b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
        assert_equal(a == b, [[True, False, False], [False, False, True]])
        assert_equal(b == a, [[True, False, False], [False, False, True]])

        # Check that broadcasting Fortran-style arrays with a subarray work
        a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F')
        b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
        assert_equal(a == b, [[True, False, False], [False, False, True]])
        assert_equal(b == a, [[True, False, False], [False, False, True]])

        # Check that incompatible sub-array shapes don't result to broadcasting
        x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')])
        y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
        # This comparison invokes deprecated behaviour, and will probably
        # start raising an error eventually. What we really care about in this
        # test is just that it doesn't return True.
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=DeprecationWarning)
            assert_equal(x == y, False)

        x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')])
        y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
        # This comparison invokes deprecated behaviour, and will probably
        # start raising an error eventually. What we really care about in this
        # test is just that it doesn't return True.
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=DeprecationWarning)
            assert_equal(x == y, False)

        # Check that structured arrays that are different only in
        # byte-order work
        a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')])
        b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')])
        assert_equal(a == b, [False, True])

    def test_casting(self):
        # Check that casting a structured array to change its byte order
        # works
        a = np.array([(1,)], dtype=[('a', '<i4')])
        assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe'))
        b = a.astype([('a', '>i4')])
        assert_equal(b, a.byteswap().newbyteorder())
        assert_equal(a['a'][0], b['a'][0])

        # Check that equality comparison works on structured arrays if
        # they are 'equiv'-castable
        a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')])
        b = np.array([(42, 5), (1, 10)], dtype=[('b', '>f8'), ('a', '<i4')])
        assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
        assert_equal(a == b, [True, True])

        # Check that 'equiv' casting can reorder fields and change byte
        # order
        assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
        c = a.astype(b.dtype, casting='equiv')
        assert_equal(a == c, [True, True])

        # Check that 'safe' casting can change byte order and up-cast
        # fields
        t = [('a', '<i8'), ('b', '>f8')]
        assert_(np.can_cast(a.dtype, t, casting='safe'))
        c = a.astype(t, casting='safe')
        assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
                     [True, True])

        # Check that 'same_kind' casting can change byte order and
        # change field widths within a "kind"
        t = [('a', '<i4'), ('b', '>f4')]
        assert_(np.can_cast(a.dtype, t, casting='same_kind'))
        c = a.astype(t, casting='same_kind')
        assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
                     [True, True])

        # Check that casting fails if the casting rule should fail on
        # any of the fields
        t = [('a', '>i8'), ('b', '<f4')]
        assert_(not np.can_cast(a.dtype, t, casting='safe'))
        assert_raises(TypeError, a.astype, t, casting='safe')
        t = [('a', '>i2'), ('b', '<f8')]
        assert_(not np.can_cast(a.dtype, t, casting='equiv'))
        assert_raises(TypeError, a.astype, t, casting='equiv')
        t = [('a', '>i8'), ('b', '<i2')]
        assert_(not np.can_cast(a.dtype, t, casting='same_kind'))
        assert_raises(TypeError, a.astype, t, casting='same_kind')
        assert_(not np.can_cast(a.dtype, b.dtype, casting='no'))
        assert_raises(TypeError, a.astype, b.dtype, casting='no')

        # Check that non-'unsafe' casting can't change the set of field names
        for casting in ['no', 'safe', 'equiv', 'same_kind']:
            t = [('a', '>i4')]
            assert_(not np.can_cast(a.dtype, t, casting=casting))
            t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')]
            assert_(not np.can_cast(a.dtype, t, casting=casting))

    def test_objview(self):
        # https://github.com/numpy/numpy/issues/3286
        a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')])
        a[['a', 'b']]  # TypeError?

        # https://github.com/numpy/numpy/issues/3253
        dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')])
        dat2[['B', 'A']]  # TypeError?

    def test_setfield(self):
        # https://github.com/numpy/numpy/issues/3126
        struct_dt = np.dtype([('elem', 'i4', 5),])
        dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)])
        x = np.zeros(1, dt)
        x[0]['field'] = np.ones(10, dtype='i4')
        x[0]['struct'] = np.ones(1, dtype=struct_dt)
        assert_equal(x[0]['field'], np.ones(10, dtype='i4'))

    def test_setfield_object(self):
        # make sure object field assignment with ndarray value
        # on void scalar mimics setitem behavior
        b = np.zeros(1, dtype=[('x', 'O')])
        # next line should work identically to b['x'][0] = np.arange(3)
        b[0]['x'] = np.arange(3)
        assert_equal(b[0]['x'], np.arange(3))

        # check that broadcasting check still works
        c = np.zeros(1, dtype=[('x', 'O', 5)])

        def testassign():
            c[0]['x'] = np.arange(3)

        assert_raises(ValueError, testassign)


class TestBool(TestCase):
    def test_test_interning(self):
        a0 = np.bool_(0)
        b0 = np.bool_(False)
        self.assertTrue(a0 is b0)
        a1 = np.bool_(1)
        b1 = np.bool_(True)
        self.assertTrue(a1 is b1)
        self.assertTrue(np.array([True])[0] is a1)
        self.assertTrue(np.array(True)[()] is a1)

    def test_sum(self):
        d = np.ones(101, dtype=np.bool)
        assert_equal(d.sum(), d.size)
        assert_equal(d[::2].sum(), d[::2].size)
        assert_equal(d[::-2].sum(), d[::-2].size)

        d = np.frombuffer(b'\xff\xff' * 100, dtype=bool)
        assert_equal(d.sum(), d.size)
        assert_equal(d[::2].sum(), d[::2].size)
        assert_equal(d[::-2].sum(), d[::-2].size)

    def check_count_nonzero(self, power, length):
        powers = [2 ** i for i in range(length)]
        for i in range(2**power):
            l = [(i & x) != 0 for x in powers]
            a = np.array(l, dtype=np.bool)
            c = builtins.sum(l)
            self.assertEqual(np.count_nonzero(a), c)
            av = a.view(np.uint8)
            av *= 3
            self.assertEqual(np.count_nonzero(a), c)
            av *= 4
            self.assertEqual(np.count_nonzero(a), c)
            av[av != 0] = 0xFF
            self.assertEqual(np.count_nonzero(a), c)

    def test_count_nonzero(self):
        # check all 12 bit combinations in a length 17 array
        # covers most cases of the 16 byte unrolled code
        self.check_count_nonzero(12, 17)

    @dec.slow
    def test_count_nonzero_all(self):
        # check all combinations in a length 17 array
        # covers all cases of the 16 byte unrolled code
        self.check_count_nonzero(17, 17)

    def test_count_nonzero_unaligned(self):
        # prevent mistakes as e.g. gh-4060
        for o in range(7):
            a = np.zeros((18,), dtype=np.bool)[o+1:]
            a[:o] = True
            self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist()))
            a = np.ones((18,), dtype=np.bool)[o+1:]
            a[:o] = False
            self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist()))


class TestMethods(TestCase):
    def test_compress(self):
        tgt = [[5, 6, 7, 8, 9]]
        arr = np.arange(10).reshape(2, 5)
        out = arr.compress([0, 1], axis=0)
        assert_equal(out, tgt)

        tgt = [[1, 3], [6, 8]]
        out = arr.compress([0, 1, 0, 1, 0], axis=1)
        assert_equal(out, tgt)

        tgt = [[1], [6]]
        arr = np.arange(10).reshape(2, 5)
        out = arr.compress([0, 1], axis=1)
        assert_equal(out, tgt)

        arr = np.arange(10).reshape(2, 5)
        out = arr.compress([0, 1])
        assert_equal(out, 1)

    def test_choose(self):
        x = 2*np.ones((3,), dtype=int)
        y = 3*np.ones((3,), dtype=int)
        x2 = 2*np.ones((2, 3), dtype=int)
        y2 = 3*np.ones((2, 3), dtype=int)
        ind = np.array([0, 0, 1])

        A = ind.choose((x, y))
        assert_equal(A, [2, 2, 3])

        A = ind.choose((x2, y2))
        assert_equal(A, [[2, 2, 3], [2, 2, 3]])

        A = ind.choose((x, y2))
        assert_equal(A, [[2, 2, 3], [2, 2, 3]])

    def test_prod(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]

        for ctype in [np.int16, np.uint16, np.int32, np.uint32,
                      np.float32, np.float64, np.complex64, np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)
            if ctype in ['1', 'b']:
                self.assertRaises(ArithmeticError, a.prod)
                self.assertRaises(ArithmeticError, a2.prod, axis=1)
            else:
                assert_equal(a.prod(axis=0), 26400)
                assert_array_equal(a2.prod(axis=0),
                                   np.array([50, 36, 84, 180], ctype))
                assert_array_equal(a2.prod(axis=-1),
                                   np.array([24, 1890, 600], ctype))

    def test_repeat(self):
        m = np.array([1, 2, 3, 4, 5, 6])
        m_rect = m.reshape((2, 3))

        A = m.repeat([1, 3, 2, 1, 1, 2])
        assert_equal(A, [1, 2, 2, 2, 3,
                         3, 4, 5, 6, 6])

        A = m.repeat(2)
        assert_equal(A, [1, 1, 2, 2, 3, 3,
                         4, 4, 5, 5, 6, 6])

        A = m_rect.repeat([2, 1], axis=0)
        assert_equal(A, [[1, 2, 3],
                         [1, 2, 3],
                         [4, 5, 6]])

        A = m_rect.repeat([1, 3, 2], axis=1)
        assert_equal(A, [[1, 2, 2, 2, 3, 3],
                         [4, 5, 5, 5, 6, 6]])

        A = m_rect.repeat(2, axis=0)
        assert_equal(A, [[1, 2, 3],
                         [1, 2, 3],
                         [4, 5, 6],
                         [4, 5, 6]])

        A = m_rect.repeat(2, axis=1)
        assert_equal(A, [[1, 1, 2, 2, 3, 3],
                         [4, 4, 5, 5, 6, 6]])

    def test_reshape(self):
        arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])

        tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
        assert_equal(arr.reshape(2, 6), tgt)

        tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
        assert_equal(arr.reshape(3, 4), tgt)

        tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]]
        assert_equal(arr.reshape((3, 4), order='F'), tgt)

        tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
        assert_equal(arr.T.reshape((3, 4), order='C'), tgt)

    def test_round(self):
        def check_round(arr, expected, *round_args):
            assert_equal(arr.round(*round_args), expected)
            # With output array
            out = np.zeros_like(arr)
            res = arr.round(*round_args, out=out)
            assert_equal(out, expected)
            assert_equal(out, res)

        check_round(np.array([1.2, 1.5]), [1, 2])
        check_round(np.array(1.5), 2)
        check_round(np.array([12.2, 15.5]), [10, 20], -1)
        check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1)
        # Complex rounding
        check_round(np.array([4.5 + 1.5j]), [4 + 2j])
        check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1)

    def test_squeeze(self):
        a = np.array([[[1], [2], [3]]])
        assert_equal(a.squeeze(), [1, 2, 3])
        assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]])
        assert_raises(ValueError, a.squeeze, axis=(1,))
        assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]])

    def test_transpose(self):
        a = np.array([[1, 2], [3, 4]])
        assert_equal(a.transpose(), [[1, 3], [2, 4]])
        self.assertRaises(ValueError, lambda: a.transpose(0))
        self.assertRaises(ValueError, lambda: a.transpose(0, 0))
        self.assertRaises(ValueError, lambda: a.transpose(0, 1, 2))

    def test_sort(self):
        # test ordering for floats and complex containing nans. It is only
        # necessary to check the less-than comparison, so sorts that
        # only follow the insertion sort path are sufficient. We only
        # test doubles and complex doubles as the logic is the same.

        # check doubles
        msg = "Test real sort order with nans"
        a = np.array([np.nan, 1, 0])
        b = np.sort(a)
        assert_equal(b, a[::-1], msg)
        # check complex
        msg = "Test complex sort order with nans"
        a = np.zeros(9, dtype=np.complex128)
        a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0]
        a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0]
        b = np.sort(a)
        assert_equal(b, a[::-1], msg)

        # all c scalar sorts use the same code with different types
        # so it suffices to run a quick check with one type. The number
        # of sorted items must be greater than ~50 to check the actual
        # algorithm because quick and merge sort fall over to insertion
        # sort for small arrays.
        a = np.arange(101)
        b = a[::-1].copy()
        for kind in ['q', 'm', 'h']:
            msg = "scalar sort, kind=%s" % kind
            c = a.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)
            c = b.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)

        # test complex sorts. These use the same code as the scalars
        # but the compare function differs.
        ai = a*1j + 1
        bi = b*1j + 1
        for kind in ['q', 'm', 'h']:
            msg = "complex sort, real part == 1, kind=%s" % kind
            c = ai.copy()
            c.sort(kind=kind)
            assert_equal(c, ai, msg)
            c = bi.copy()
            c.sort(kind=kind)
            assert_equal(c, ai, msg)
        ai = a + 1j
        bi = b + 1j
        for kind in ['q', 'm', 'h']:
            msg = "complex sort, imag part == 1, kind=%s" % kind
            c = ai.copy()
            c.sort(kind=kind)
            assert_equal(c, ai, msg)
            c = bi.copy()
            c.sort(kind=kind)
            assert_equal(c, ai, msg)

        # test sorting of complex arrays requiring byte-swapping, gh-5441
        for endianess in '<>':
            for dt in np.typecodes['Complex']:
                arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt)
                c = arr.copy()
                c.sort()
                msg = 'byte-swapped complex sort, dtype={0}'.format(dt)
                assert_equal(c, arr, msg)

        # test string sorts.
        s = 'aaaaaaaa'
        a = np.array([s + chr(i) for i in range(101)])
        b = a[::-1].copy()
        for kind in ['q', 'm', 'h']:
            msg = "string sort, kind=%s" % kind
            c = a.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)
            c = b.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)

        # test unicode sorts.
        s = 'aaaaaaaa'
        a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode)
        b = a[::-1].copy()
        for kind in ['q', 'm', 'h']:
            msg = "unicode sort, kind=%s" % kind
            c = a.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)
            c = b.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)

        # test object array sorts.
        a = np.empty((101,), dtype=np.object)
        a[:] = list(range(101))
        b = a[::-1]
        for kind in ['q', 'h', 'm']:
            msg = "object sort, kind=%s" % kind
            c = a.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)
            c = b.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)

        # test record array sorts.
        dt = np.dtype([('f', float), ('i', int)])
        a = np.array([(i, i) for i in range(101)], dtype=dt)
        b = a[::-1]
        for kind in ['q', 'h', 'm']:
            msg = "object sort, kind=%s" % kind
            c = a.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)
            c = b.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)

        # test datetime64 sorts.
        a = np.arange(0, 101, dtype='datetime64[D]')
        b = a[::-1]
        for kind in ['q', 'h', 'm']:
            msg = "datetime64 sort, kind=%s" % kind
            c = a.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)
            c = b.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)

        # test timedelta64 sorts.
        a = np.arange(0, 101, dtype='timedelta64[D]')
        b = a[::-1]
        for kind in ['q', 'h', 'm']:
            msg = "timedelta64 sort, kind=%s" % kind
            c = a.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)
            c = b.copy()
            c.sort(kind=kind)
            assert_equal(c, a, msg)

        # check axis handling. This should be the same for all type
        # specific sorts, so we only check it for one type and one kind
        a = np.array([[3, 2], [1, 0]])
        b = np.array([[1, 0], [3, 2]])
        c = np.array([[2, 3], [0, 1]])
        d = a.copy()
        d.sort(axis=0)
        assert_equal(d, b, "test sort with axis=0")
        d = a.copy()
        d.sort(axis=1)
        assert_equal(d, c, "test sort with axis=1")
        d = a.copy()
        d.sort()
        assert_equal(d, c, "test sort with default axis")

        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array sort with axis={0}'.format(axis)
            assert_equal(np.sort(a, axis=axis), a, msg)
        msg = 'test empty array sort with axis=None'
        assert_equal(np.sort(a, axis=None), a.ravel(), msg)

        # test generic class with bogus ordering,
        # should not segfault.
        class Boom(object):
            def __lt__(self, other):
                return True

        a = np.array([Boom()]*100, dtype=object)
        for kind in ['q', 'm', 'h']:
            msg = "bogus comparison object sort, kind=%s" % kind
            c.sort(kind=kind)

    def test_copy(self):
        def assert_fortran(arr):
            assert_(arr.flags.fortran)
            assert_(arr.flags.f_contiguous)
            assert_(not arr.flags.c_contiguous)

        def assert_c(arr):
            assert_(not arr.flags.fortran)
            assert_(not arr.flags.f_contiguous)
            assert_(arr.flags.c_contiguous)

        a = np.empty((2, 2), order='F')
        # Test copying a Fortran array
        assert_c(a.copy())
        assert_c(a.copy('C'))
        assert_fortran(a.copy('F'))
        assert_fortran(a.copy('A'))

        # Now test starting with a C array.
        a = np.empty((2, 2), order='C')
        assert_c(a.copy())
        assert_c(a.copy('C'))
        assert_fortran(a.copy('F'))
        assert_c(a.copy('A'))

    def test_sort_order(self):
        # Test sorting an array with fields
        x1 = np.array([21, 32, 14])
        x2 = np.array(['my', 'first', 'name'])
        x3 = np.array([3.1, 4.5, 6.2])
        r = np.rec.fromarrays([x1, x2, x3], names='id,word,number')

        r.sort(order=['id'])
        assert_equal(r.id, np.array([14, 21, 32]))
        assert_equal(r.word, np.array(['name', 'my', 'first']))
        assert_equal(r.number, np.array([6.2, 3.1, 4.5]))

        r.sort(order=['word'])
        assert_equal(r.id, np.array([32, 21, 14]))
        assert_equal(r.word, np.array(['first', 'my', 'name']))
        assert_equal(r.number, np.array([4.5, 3.1, 6.2]))

        r.sort(order=['number'])
        assert_equal(r.id, np.array([21, 32, 14]))
        assert_equal(r.word, np.array(['my', 'first', 'name']))
        assert_equal(r.number, np.array([3.1, 4.5, 6.2]))

        if sys.byteorder == 'little':
            strtype = '>i2'
        else:
            strtype = '<i2'
        mydtype = [('name', strchar + '5'), ('col2', strtype)]
        r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)],
                     dtype=mydtype)
        r.sort(order='col2')
        assert_equal(r['col2'], [1, 3, 255, 258])
        assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)],
                                 dtype=mydtype))

    def test_argsort(self):
        # all c scalar argsorts use the same code with different types
        # so it suffices to run a quick check with one type. The number
        # of sorted items must be greater than ~50 to check the actual
        # algorithm because quick and merge sort fall over to insertion
        # sort for small arrays.
        a = np.arange(101)
        b = a[::-1].copy()
        for kind in ['q', 'm', 'h']:
            msg = "scalar argsort, kind=%s" % kind
            assert_equal(a.copy().argsort(kind=kind), a, msg)
            assert_equal(b.copy().argsort(kind=kind), b, msg)

        # test complex argsorts. These use the same code as the scalars
        # but the compare function differs.
        ai = a*1j + 1
        bi = b*1j + 1
        for kind in ['q', 'm', 'h']:
            msg = "complex argsort, kind=%s" % kind
            assert_equal(ai.copy().argsort(kind=kind), a, msg)
            assert_equal(bi.copy().argsort(kind=kind), b, msg)
        ai = a + 1j
        bi = b + 1j
        for kind in ['q', 'm', 'h']:
            msg = "complex argsort, kind=%s" % kind
            assert_equal(ai.copy().argsort(kind=kind), a, msg)
            assert_equal(bi.copy().argsort(kind=kind), b, msg)

        # test argsort of complex arrays requiring byte-swapping, gh-5441
        for endianess in '<>':
            for dt in np.typecodes['Complex']:
                arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt)
                msg = 'byte-swapped complex argsort, dtype={0}'.format(dt)
                assert_equal(arr.argsort(),
                             np.arange(len(arr), dtype=np.intp), msg)

        # test string argsorts.
        s = 'aaaaaaaa'
        a = np.array([s + chr(i) for i in range(101)])
        b = a[::-1].copy()
        r = np.arange(101)
        rr = r[::-1]
        for kind in ['q', 'm', 'h']:
            msg = "string argsort, kind=%s" % kind
            assert_equal(a.copy().argsort(kind=kind), r, msg)
            assert_equal(b.copy().argsort(kind=kind), rr, msg)

        # test unicode argsorts.
        s = 'aaaaaaaa'
        a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode)
        b = a[::-1]
        r = np.arange(101)
        rr = r[::-1]
        for kind in ['q', 'm', 'h']:
            msg = "unicode argsort, kind=%s" % kind
            assert_equal(a.copy().argsort(kind=kind), r, msg)
            assert_equal(b.copy().argsort(kind=kind), rr, msg)

        # test object array argsorts.
        a = np.empty((101,), dtype=np.object)
        a[:] = list(range(101))
        b = a[::-1]
        r = np.arange(101)
        rr = r[::-1]
        for kind in ['q', 'm', 'h']:
            msg = "object argsort, kind=%s" % kind
            assert_equal(a.copy().argsort(kind=kind), r, msg)
            assert_equal(b.copy().argsort(kind=kind), rr, msg)

        # test structured array argsorts.
        dt = np.dtype([('f', float), ('i', int)])
        a = np.array([(i, i) for i in range(101)], dtype=dt)
        b = a[::-1]
        r = np.arange(101)
        rr = r[::-1]
        for kind in ['q', 'm', 'h']:
            msg = "structured array argsort, kind=%s" % kind
            assert_equal(a.copy().argsort(kind=kind), r, msg)
            assert_equal(b.copy().argsort(kind=kind), rr, msg)

        # test datetime64 argsorts.
        a = np.arange(0, 101, dtype='datetime64[D]')
        b = a[::-1]
        r = np.arange(101)
        rr = r[::-1]
        for kind in ['q', 'h', 'm']:
            msg = "datetime64 argsort, kind=%s" % kind
            assert_equal(a.copy().argsort(kind=kind), r, msg)
            assert_equal(b.copy().argsort(kind=kind), rr, msg)

        # test timedelta64 argsorts.
        a = np.arange(0, 101, dtype='timedelta64[D]')
        b = a[::-1]
        r = np.arange(101)
        rr = r[::-1]
        for kind in ['q', 'h', 'm']:
            msg = "timedelta64 argsort, kind=%s" % kind
            assert_equal(a.copy().argsort(kind=kind), r, msg)
            assert_equal(b.copy().argsort(kind=kind), rr, msg)

        # check axis handling. This should be the same for all type
        # specific argsorts, so we only check it for one type and one kind
        a = np.array([[3, 2], [1, 0]])
        b = np.array([[1, 1], [0, 0]])
        c = np.array([[1, 0], [1, 0]])
        assert_equal(a.copy().argsort(axis=0), b)
        assert_equal(a.copy().argsort(axis=1), c)
        assert_equal(a.copy().argsort(), c)

        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array argsort with axis={0}'.format(axis)
            assert_equal(np.argsort(a, axis=axis),
                         np.zeros_like(a, dtype=np.intp), msg)
        msg = 'test empty array argsort with axis=None'
        assert_equal(np.argsort(a, axis=None),
                     np.zeros_like(a.ravel(), dtype=np.intp), msg)

        # check that stable argsorts are stable
        r = np.arange(100)
        # scalars
        a = np.zeros(100)
        assert_equal(a.argsort(kind='m'), r)
        # complex
        a = np.zeros(100, dtype=np.complex)
        assert_equal(a.argsort(kind='m'), r)
        # string
        a = np.array(['aaaaaaaaa' for i in range(100)])
        assert_equal(a.argsort(kind='m'), r)
        # unicode
        a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode)
        assert_equal(a.argsort(kind='m'), r)

    def test_sort_unicode_kind(self):
        d = np.arange(10)
        k = b'\xc3\xa4'.decode("UTF8")
        assert_raises(ValueError, d.sort, kind=k)
        assert_raises(ValueError, d.argsort, kind=k)

    def test_searchsorted(self):
        # test for floats and complex containing nans. The logic is the
        # same for all float types so only test double types for now.
        # The search sorted routines use the compare functions for the
        # array type, so this checks if that is consistent with the sort
        # order.

        # check double
        a = np.array([0, 1, np.nan])
        msg = "Test real searchsorted with nans, side='l'"
        b = a.searchsorted(a, side='l')
        assert_equal(b, np.arange(3), msg)
        msg = "Test real searchsorted with nans, side='r'"
        b = a.searchsorted(a, side='r')
        assert_equal(b, np.arange(1, 4), msg)
        # check double complex
        a = np.zeros(9, dtype=np.complex128)
        a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan]
        a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan]
        msg = "Test complex searchsorted with nans, side='l'"
        b = a.searchsorted(a, side='l')
        assert_equal(b, np.arange(9), msg)
        msg = "Test complex searchsorted with nans, side='r'"
        b = a.searchsorted(a, side='r')
        assert_equal(b, np.arange(1, 10), msg)
        msg = "Test searchsorted with little endian, side='l'"
        a = np.array([0, 128], dtype='<i4')
        b = a.searchsorted(np.array(128, dtype='<i4'))
        assert_equal(b, 1, msg)
        msg = "Test searchsorted with big endian, side='l'"
        a = np.array([0, 128], dtype='>i4')
        b = a.searchsorted(np.array(128, dtype='>i4'))
        assert_equal(b, 1, msg)

        # Check 0 elements
        a = np.ones(0)
        b = a.searchsorted([0, 1, 2], 'l')
        assert_equal(b, [0, 0, 0])
        b = a.searchsorted([0, 1, 2], 'r')
        assert_equal(b, [0, 0, 0])
        a = np.ones(1)
        # Check 1 element
        b = a.searchsorted([0, 1, 2], 'l')
        assert_equal(b, [0, 0, 1])
        b = a.searchsorted([0, 1, 2], 'r')
        assert_equal(b, [0, 1, 1])
        # Check all elements equal
        a = np.ones(2)
        b = a.searchsorted([0, 1, 2], 'l')
        assert_equal(b, [0, 0, 2])
        b = a.searchsorted([0, 1, 2], 'r')
        assert_equal(b, [0, 2, 2])

        # Test searching unaligned array
        a = np.arange(10)
        aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
        unaligned = aligned[1:].view(a.dtype)
        unaligned[:] = a
        # Test searching unaligned array
        b = unaligned.searchsorted(a, 'l')
        assert_equal(b, a)
        b = unaligned.searchsorted(a, 'r')
        assert_equal(b, a + 1)
        # Test searching for unaligned keys
        b = a.searchsorted(unaligned, 'l')
        assert_equal(b, a)
        b = a.searchsorted(unaligned, 'r')
        assert_equal(b, a + 1)

        # Test smart resetting of binsearch indices
        a = np.arange(5)
        b = a.searchsorted([6, 5, 4], 'l')
        assert_equal(b, [5, 5, 4])
        b = a.searchsorted([6, 5, 4], 'r')
        assert_equal(b, [5, 5, 5])

        # Test all type specific binary search functions
        types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
                         np.typecodes['Datetime'], '?O'))
        for dt in types:
            if dt == 'M':
                dt = 'M8[D]'
            if dt == '?':
                a = np.arange(2, dtype=dt)
                out = np.arange(2)
            else:
                a = np.arange(0, 5, dtype=dt)
                out = np.arange(5)
            b = a.searchsorted(a, 'l')
            assert_equal(b, out)
            b = a.searchsorted(a, 'r')
            assert_equal(b, out + 1)

    def test_searchsorted_unicode(self):
        # Test searchsorted on unicode strings.

        # 1.6.1 contained a string length miscalculation in
        # arraytypes.c.src:UNICODE_compare() which manifested as
        # incorrect/inconsistent results from searchsorted.
        a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1',
                      'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'],
                     dtype=np.unicode)
        ind = np.arange(len(a))
        assert_equal([a.searchsorted(v, 'left') for v in a], ind)
        assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1)
        assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind)
        assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1)

    def test_searchsorted_with_sorter(self):
        a = np.array([5, 2, 1, 3, 4])
        s = np.argsort(a)
        assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3)))
        assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1])
        assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4])
        assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6])

        # bounds check
        assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5])
        assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3])
        assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3])

        a = np.random.rand(300)
        s = a.argsort()
        b = np.sort(a)
        k = np.linspace(0, 1, 20)
        assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s))

        a = np.array([0, 1, 2, 3, 5]*20)
        s = a.argsort()
        k = [0, 1, 2, 3, 5]
        expected = [0, 20, 40, 60, 80]
        assert_equal(a.searchsorted(k, side='l', sorter=s), expected)
        expected = [20, 40, 60, 80, 100]
        assert_equal(a.searchsorted(k, side='r', sorter=s), expected)

        # Test searching unaligned array
        keys = np.arange(10)
        a = keys.copy()
        np.random.shuffle(s)
        s = a.argsort()
        aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
        unaligned = aligned[1:].view(a.dtype)
        # Test searching unaligned array
        unaligned[:] = a
        b = unaligned.searchsorted(keys, 'l', s)
        assert_equal(b, keys)
        b = unaligned.searchsorted(keys, 'r', s)
        assert_equal(b, keys + 1)
        # Test searching for unaligned keys
        unaligned[:] = keys
        b = a.searchsorted(unaligned, 'l', s)
        assert_equal(b, keys)
        b = a.searchsorted(unaligned, 'r', s)
        assert_equal(b, keys + 1)

        # Test all type specific indirect binary search functions
        types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
                         np.typecodes['Datetime'], '?O'))
        for dt in types:
            if dt == 'M':
                dt = 'M8[D]'
            if dt == '?':
                a = np.array([1, 0], dtype=dt)
                # We want the sorter array to be of a type that is different
                # from np.intp in all platforms, to check for #4698
                s = np.array([1, 0], dtype=np.int16)
                out = np.array([1, 0])
            else:
                a = np.array([3, 4, 1, 2, 0], dtype=dt)
                # We want the sorter array to be of a type that is different
                # from np.intp in all platforms, to check for #4698
                s = np.array([4, 2, 3, 0, 1], dtype=np.int16)
                out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
            b = a.searchsorted(a, 'l', s)
            assert_equal(b, out)
            b = a.searchsorted(a, 'r', s)
            assert_equal(b, out + 1)

        # Test non-contiguous sorter array
        a = np.array([3, 4, 1, 2, 0])
        srt = np.empty((10,), dtype=np.intp)
        srt[1::2] = -1
        srt[::2] = [4, 2, 3, 0, 1]
        s = srt[::2]
        out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
        b = a.searchsorted(a, 'l', s)
        assert_equal(b, out)
        b = a.searchsorted(a, 'r', s)
        assert_equal(b, out + 1)

    def test_searchsorted_return_type(self):
        # Functions returning indices should always return base ndarrays
        class A(np.ndarray):
            pass
        a = np.arange(5).view(A)
        b = np.arange(1, 3).view(A)
        s = np.arange(5).view(A)
        assert_(not isinstance(a.searchsorted(b, 'l'), A))
        assert_(not isinstance(a.searchsorted(b, 'r'), A))
        assert_(not isinstance(a.searchsorted(b, 'l', s), A))
        assert_(not isinstance(a.searchsorted(b, 'r', s), A))

    def test_argpartition_out_of_range(self):
        # Test out of range values in kth raise an error, gh-5469
        d = np.arange(10)
        assert_raises(ValueError, d.argpartition, 10)
        assert_raises(ValueError, d.argpartition, -11)
        # Test also for generic type argpartition, which uses sorting
        # and used to not bound check kth
        d_obj = np.arange(10, dtype=object)
        assert_raises(ValueError, d_obj.argpartition, 10)
        assert_raises(ValueError, d_obj.argpartition, -11)

    def test_partition_out_of_range(self):
        # Test out of range values in kth raise an error, gh-5469
        d = np.arange(10)
        assert_raises(ValueError, d.partition, 10)
        assert_raises(ValueError, d.partition, -11)
        # Test also for generic type partition, which uses sorting
        # and used to not bound check kth
        d_obj = np.arange(10, dtype=object)
        assert_raises(ValueError, d_obj.partition, 10)
        assert_raises(ValueError, d_obj.partition, -11)

    def test_partition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array partition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis), a, msg)
        msg = 'test empty array partition with axis=None'
        assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg)

    def test_argpartition_empty_array(self):
        # check axis handling for multidimensional empty arrays
        a = np.array([])
        a.shape = (3, 2, 1, 0)
        for axis in range(-a.ndim, a.ndim):
            msg = 'test empty array argpartition with axis={0}'.format(axis)
            assert_equal(np.partition(a, 0, axis=axis),
                         np.zeros_like(a, dtype=np.intp), msg)
        msg = 'test empty array argpartition with axis=None'
        assert_equal(np.partition(a, 0, axis=None),
                     np.zeros_like(a.ravel(), dtype=np.intp), msg)

    def test_partition(self):
        d = np.arange(10)
        assert_raises(TypeError, np.partition, d, 2, kind=1)
        assert_raises(ValueError, np.partition, d, 2, kind="nonsense")
        assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense")
        assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense")
        assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense")
        for k in ("introselect",):
            d = np.array([])
            assert_array_equal(np.partition(d, 0, kind=k), d)
            assert_array_equal(np.argpartition(d, 0, kind=k), d)
            d = np.ones(1)
            assert_array_equal(np.partition(d, 0, kind=k)[0], d)
            assert_array_equal(d[np.argpartition(d, 0, kind=k)],
                               np.partition(d, 0, kind=k))

            # kth not modified
            kth = np.array([30, 15, 5])
            okth = kth.copy()
            np.partition(np.arange(40), kth)
            assert_array_equal(kth, okth)

            for r in ([2, 1], [1, 2], [1, 1]):
                d = np.array(r)
                tgt = np.sort(d)
                assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
                assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
                assert_array_equal(d[np.argpartition(d, 0, kind=k)],
                                   np.partition(d, 0, kind=k))
                assert_array_equal(d[np.argpartition(d, 1, kind=k)],
                                   np.partition(d, 1, kind=k))
                for i in range(d.size):
                    d[i:].partition(0, kind=k)
                assert_array_equal(d, tgt)

            for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1],
                      [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]):
                d = np.array(r)
                tgt = np.sort(d)
                assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
                assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
                assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2])
                assert_array_equal(d[np.argpartition(d, 0, kind=k)],
                                   np.partition(d, 0, kind=k))
                assert_array_equal(d[np.argpartition(d, 1, kind=k)],
                                   np.partition(d, 1, kind=k))
                assert_array_equal(d[np.argpartition(d, 2, kind=k)],
                                   np.partition(d, 2, kind=k))
                for i in range(d.size):
                    d[i:].partition(0, kind=k)
                assert_array_equal(d, tgt)

            d = np.ones(50)
            assert_array_equal(np.partition(d, 0, kind=k), d)
            assert_array_equal(d[np.argpartition(d, 0, kind=k)],
                               np.partition(d, 0, kind=k))

            # sorted
            d = np.arange(49)
            self.assertEqual(np.partition(d, 5, kind=k)[5], 5)
            self.assertEqual(np.partition(d, 15, kind=k)[15], 15)
            assert_array_equal(d[np.argpartition(d, 5, kind=k)],
                               np.partition(d, 5, kind=k))
            assert_array_equal(d[np.argpartition(d, 15, kind=k)],
                               np.partition(d, 15, kind=k))

            # rsorted
            d = np.arange(47)[::-1]
            self.assertEqual(np.partition(d, 6, kind=k)[6], 6)
            self.assertEqual(np.partition(d, 16, kind=k)[16], 16)
            assert_array_equal(d[np.argpartition(d, 6, kind=k)],
                               np.partition(d, 6, kind=k))
            assert_array_equal(d[np.argpartition(d, 16, kind=k)],
                               np.partition(d, 16, kind=k))

            assert_array_equal(np.partition(d, -6, kind=k),
                               np.partition(d, 41, kind=k))
            assert_array_equal(np.partition(d, -16, kind=k),
                               np.partition(d, 31, kind=k))
            assert_array_equal(d[np.argpartition(d, -6, kind=k)],
                               np.partition(d, 41, kind=k))

            # median of 3 killer, O(n^2) on pure median 3 pivot quickselect
            # exercises the median of median of 5 code used to keep O(n)
            d = np.arange(1000000)
            x = np.roll(d, d.size // 2)
            mid = x.size // 2 + 1
            assert_equal(np.partition(x, mid)[mid], mid)
            d = np.arange(1000001)
            x = np.roll(d, d.size // 2 + 1)
            mid = x.size // 2 + 1
            assert_equal(np.partition(x, mid)[mid], mid)

            # max
            d = np.ones(10)
            d[1] = 4
            assert_equal(np.partition(d, (2, -1))[-1], 4)
            assert_equal(np.partition(d, (2, -1))[2], 1)
            assert_equal(d[np.argpartition(d, (2, -1))][-1], 4)
            assert_equal(d[np.argpartition(d, (2, -1))][2], 1)
            d[1] = np.nan
            assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1]))
            assert_(np.isnan(np.partition(d, (2, -1))[-1]))

            # equal elements
            d = np.arange(47) % 7
            tgt = np.sort(np.arange(47) % 7)
            np.random.shuffle(d)
            for i in range(d.size):
                self.assertEqual(np.partition(d, i, kind=k)[i], tgt[i])
            assert_array_equal(d[np.argpartition(d, 6, kind=k)],
                               np.partition(d, 6, kind=k))
            assert_array_equal(d[np.argpartition(d, 16, kind=k)],
                               np.partition(d, 16, kind=k))
            for i in range(d.size):
                d[i:].partition(0, kind=k)
            assert_array_equal(d, tgt)

            d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
                          7, 7, 7, 7, 7, 9])
            kth = [0, 3, 19, 20]
            assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7))
            assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7))

            d = np.array([2, 1])
            d.partition(0, kind=k)
            assert_raises(ValueError, d.partition, 2)
            assert_raises(ValueError, d.partition, 3, axis=1)
            assert_raises(ValueError, np.partition, d, 2)
            assert_raises(ValueError, np.partition, d, 2, axis=1)
            assert_raises(ValueError, d.argpartition, 2)
            assert_raises(ValueError, d.argpartition, 3, axis=1)
            assert_raises(ValueError, np.argpartition, d, 2)
            assert_raises(ValueError, np.argpartition, d, 2, axis=1)
            d = np.arange(10).reshape((2, 5))
            d.partition(1, axis=0, kind=k)
            d.partition(4, axis=1, kind=k)
            np.partition(d, 1, axis=0, kind=k)
            np.partition(d, 4, axis=1, kind=k)
            np.partition(d, 1, axis=None, kind=k)
            np.partition(d, 9, axis=None, kind=k)
            d.argpartition(1, axis=0, kind=k)
            d.argpartition(4, axis=1, kind=k)
            np.argpartition(d, 1, axis=0, kind=k)
            np.argpartition(d, 4, axis=1, kind=k)
            np.argpartition(d, 1, axis=None, kind=k)
            np.argpartition(d, 9, axis=None, kind=k)
            assert_raises(ValueError, d.partition, 2, axis=0)
            assert_raises(ValueError, d.partition, 11, axis=1)
            assert_raises(TypeError, d.partition, 2, axis=None)
            assert_raises(ValueError, np.partition, d, 9, axis=1)
            assert_raises(ValueError, np.partition, d, 11, axis=None)
            assert_raises(ValueError, d.argpartition, 2, axis=0)
            assert_raises(ValueError, d.argpartition, 11, axis=1)
            assert_raises(ValueError, np.argpartition, d, 9, axis=1)
            assert_raises(ValueError, np.argpartition, d, 11, axis=None)

            td = [(dt, s) for dt in [np.int32, np.float32, np.complex64]
                  for s in (9, 16)]
            for dt, s in td:
                aae = assert_array_equal
                at = self.assertTrue

                d = np.arange(s, dtype=dt)
                np.random.shuffle(d)
                d1 = np.tile(np.arange(s, dtype=dt), (4, 1))
                map(np.random.shuffle, d1)
                d0 = np.transpose(d1)
                for i in range(d.size):
                    p = np.partition(d, i, kind=k)
                    self.assertEqual(p[i], i)
                    # all before are smaller
                    assert_array_less(p[:i], p[i])
                    # all after are larger
                    assert_array_less(p[i], p[i + 1:])
                    aae(p, d[np.argpartition(d, i, kind=k)])

                    p = np.partition(d1, i, axis=1, kind=k)
                    aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt))
                    # array_less does not seem to work right
                    at((p[:, :i].T <= p[:, i]).all(),
                       msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T))
                    at((p[:, i + 1:].T > p[:, i]).all(),
                       msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T))
                    aae(p, d1[np.arange(d1.shape[0])[:, None],
                        np.argpartition(d1, i, axis=1, kind=k)])

                    p = np.partition(d0, i, axis=0, kind=k)
                    aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt))
                    # array_less does not seem to work right
                    at((p[:i, :] <= p[i, :]).all(),
                       msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]))
                    at((p[i + 1:, :] > p[i, :]).all(),
                       msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:]))
                    aae(p, d0[np.argpartition(d0, i, axis=0, kind=k),
                        np.arange(d0.shape[1])[None, :]])

                    # check inplace
                    dc = d.copy()
                    dc.partition(i, kind=k)
                    assert_equal(dc, np.partition(d, i, kind=k))
                    dc = d0.copy()
                    dc.partition(i, axis=0, kind=k)
                    assert_equal(dc, np.partition(d0, i, axis=0, kind=k))
                    dc = d1.copy()
                    dc.partition(i, axis=1, kind=k)
                    assert_equal(dc, np.partition(d1, i, axis=1, kind=k))

    def assert_partitioned(self, d, kth):
        prev = 0
        for k in np.sort(kth):
            assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k)
            assert_((d[k:] >= d[k]).all(),
                    msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k]))
            prev = k + 1

    def test_partition_iterative(self):
            d = np.arange(17)
            kth = (0, 1, 2, 429, 231)
            assert_raises(ValueError, d.partition, kth)
            assert_raises(ValueError, d.argpartition, kth)
            d = np.arange(10).reshape((2, 5))
            assert_raises(ValueError, d.partition, kth, axis=0)
            assert_raises(ValueError, d.partition, kth, axis=1)
            assert_raises(ValueError, np.partition, d, kth, axis=1)
            assert_raises(ValueError, np.partition, d, kth, axis=None)

            d = np.array([3, 4, 2, 1])
            p = np.partition(d, (0, 3))
            self.assert_partitioned(p, (0, 3))
            self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3))

            assert_array_equal(p, np.partition(d, (-3, -1)))
            assert_array_equal(p, d[np.argpartition(d, (-3, -1))])

            d = np.arange(17)
            np.random.shuffle(d)
            d.partition(range(d.size))
            assert_array_equal(np.arange(17), d)
            np.random.shuffle(d)
            assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))])

            # test unsorted kth
            d = np.arange(17)
            np.random.shuffle(d)
            keys = np.array([1, 3, 8, -2])
            np.random.shuffle(d)
            p = np.partition(d, keys)
            self.assert_partitioned(p, keys)
            p = d[np.argpartition(d, keys)]
            self.assert_partitioned(p, keys)
            np.random.shuffle(keys)
            assert_array_equal(np.partition(d, keys), p)
            assert_array_equal(d[np.argpartition(d, keys)], p)

            # equal kth
            d = np.arange(20)[::-1]
            self.assert_partitioned(np.partition(d, [5]*4), [5])
            self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]),
                                    [5]*4 + [6, 13])
            self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5])
            self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])],
                                    [5]*4 + [6, 13])

            d = np.arange(12)
            np.random.shuffle(d)
            d1 = np.tile(np.arange(12), (4, 1))
            map(np.random.shuffle, d1)
            d0 = np.transpose(d1)

            kth = (1, 6, 7, -1)
            p = np.partition(d1, kth, axis=1)
            pa = d1[np.arange(d1.shape[0])[:, None],
                    d1.argpartition(kth, axis=1)]
            assert_array_equal(p, pa)
            for i in range(d1.shape[0]):
                self.assert_partitioned(p[i,:], kth)
            p = np.partition(d0, kth, axis=0)
            pa = d0[np.argpartition(d0, kth, axis=0),
                    np.arange(d0.shape[1])[None,:]]
            assert_array_equal(p, pa)
            for i in range(d0.shape[1]):
                self.assert_partitioned(p[:, i], kth)

    def test_partition_cdtype(self):
        d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
                   ('Lancelot', 1.9, 38)],
                  dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

        tgt = np.sort(d, order=['age', 'height'])
        assert_array_equal(np.partition(d, range(d.size),
                                        order=['age', 'height']),
                           tgt)
        assert_array_equal(d[np.argpartition(d, range(d.size),
                                             order=['age', 'height'])],
                           tgt)
        for k in range(d.size):
            assert_equal(np.partition(d, k, order=['age', 'height'])[k],
                        tgt[k])
            assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k],
                         tgt[k])

        d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot'])
        tgt = np.sort(d)
        assert_array_equal(np.partition(d, range(d.size)), tgt)
        for k in range(d.size):
            assert_equal(np.partition(d, k)[k], tgt[k])
            assert_equal(d[np.argpartition(d, k)][k], tgt[k])

    def test_partition_unicode_kind(self):
        d = np.arange(10)
        k = b'\xc3\xa4'.decode("UTF8")
        assert_raises(ValueError, d.partition, 2, kind=k)
        assert_raises(ValueError, d.argpartition, 2, kind=k)

    def test_partition_fuzz(self):
        # a few rounds of random data testing
        for j in range(10, 30):
            for i in range(1, j - 2):
                d = np.arange(j)
                np.random.shuffle(d)
                d = d % np.random.randint(2, 30)
                idx = np.random.randint(d.size)
                kth = [0, idx, i, i + 1]
                tgt = np.sort(d)[kth]
                assert_array_equal(np.partition(d, kth)[kth], tgt,
                                   err_msg="data: %r\n kth: %r" % (d, kth))

    def test_argpartition_gh5524(self):
        #  A test for functionality of argpartition on lists.
        d = [6,7,3,2,9,0]
        p = np.argpartition(d,1)
        self.assert_partitioned(np.array(d)[p],[1])

    def test_flatten(self):
        x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
        x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32)
        y0 = np.array([1, 2, 3, 4, 5, 6], np.int32)
        y0f = np.array([1, 4, 2, 5, 3, 6], np.int32)
        y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32)
        y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32)
        assert_equal(x0.flatten(), y0)
        assert_equal(x0.flatten('F'), y0f)
        assert_equal(x0.flatten('F'), x0.T.flatten())
        assert_equal(x1.flatten(), y1)
        assert_equal(x1.flatten('F'), y1f)
        assert_equal(x1.flatten('F'), x1.T.flatten())

    def test_dot(self):
        a = np.array([[1, 0], [0, 1]])
        b = np.array([[0, 1], [1, 0]])
        c = np.array([[9, 1], [1, -9]])
        d = np.arange(24).reshape(4, 6)
        ddt = np.array(
            [[  55,  145,  235,  325],
             [ 145,  451,  757, 1063],
             [ 235,  757, 1279, 1801],
             [ 325, 1063, 1801, 2539]]
        )
        dtd = np.array(
            [[504, 540, 576, 612, 648, 684],
             [540, 580, 620, 660, 700, 740],
             [576, 620, 664, 708, 752, 796],
             [612, 660, 708, 756, 804, 852],
             [648, 700, 752, 804, 856, 908],
             [684, 740, 796, 852, 908, 964]]
        )


        # gemm vs syrk optimizations
        for et in [np.float32, np.float64, np.complex64, np.complex128]:
            eaf = a.astype(et)
            assert_equal(np.dot(eaf, eaf), eaf)
            assert_equal(np.dot(eaf.T, eaf), eaf)
            assert_equal(np.dot(eaf, eaf.T), eaf)
            assert_equal(np.dot(eaf.T, eaf.T), eaf)
            assert_equal(np.dot(eaf.T.copy(), eaf), eaf)
            assert_equal(np.dot(eaf, eaf.T.copy()), eaf)
            assert_equal(np.dot(eaf.T.copy(), eaf.T.copy()), eaf)

        # syrk validations
        for et in [np.float32, np.float64, np.complex64, np.complex128]:
            eaf = a.astype(et)
            ebf = b.astype(et)
            assert_equal(np.dot(ebf, ebf), eaf)
            assert_equal(np.dot(ebf.T, ebf), eaf)
            assert_equal(np.dot(ebf, ebf.T), eaf)
            assert_equal(np.dot(ebf.T, ebf.T), eaf)

        # syrk - different shape, stride, and view validations
        for et in [np.float32, np.float64, np.complex64, np.complex128]:
            edf = d.astype(et)
            assert_equal(
                np.dot(edf[::-1, :], edf.T),
                np.dot(edf[::-1, :].copy(), edf.T.copy())
            )
            assert_equal(
                np.dot(edf[:, ::-1], edf.T),
                np.dot(edf[:, ::-1].copy(), edf.T.copy())
            )
            assert_equal(
                np.dot(edf, edf[::-1, :].T),
                np.dot(edf, edf[::-1, :].T.copy())
            )
            assert_equal(
                np.dot(edf, edf[:, ::-1].T),
                np.dot(edf, edf[:, ::-1].T.copy())
            )
            assert_equal(
                np.dot(edf[:edf.shape[0] // 2, :], edf[::2, :].T),
                np.dot(edf[:edf.shape[0] // 2, :].copy(), edf[::2, :].T.copy())
            )
            assert_equal(
                np.dot(edf[::2, :], edf[:edf.shape[0] // 2, :].T),
                np.dot(edf[::2, :].copy(), edf[:edf.shape[0] // 2, :].T.copy())
            )

        # syrk - different shape
        for et in [np.float32, np.float64, np.complex64, np.complex128]:
            edf = d.astype(et)
            eddtf = ddt.astype(et)
            edtdf = dtd.astype(et)
            assert_equal(np.dot(edf, edf.T), eddtf)
            assert_equal(np.dot(edf.T, edf), edtdf)

        # function versus methods
        assert_equal(np.dot(a, b), a.dot(b))
        assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c))

        # test passing in an output array
        c = np.zeros_like(a)
        a.dot(b, c)
        assert_equal(c, np.dot(a, b))

        # test keyword args
        c = np.zeros_like(a)
        a.dot(b=b, out=c)
        assert_equal(c, np.dot(a, b))

    def test_dot_override(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return "A"

        class B(object):
            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return NotImplemented

        a = A()
        b = B()
        c = np.array([[1]])

        assert_equal(np.dot(a, b), "A")
        assert_equal(c.dot(a), "A")
        assert_raises(TypeError, np.dot, b, c)
        assert_raises(TypeError, c.dot, b)

    def test_dot_type_mismatch(self):
        c = 1.
        A = np.array((1,1), dtype='i,i')

        assert_raises(TypeError, np.dot, c, A)
        assert_raises(TypeError, np.dot, A, c)

    def test_diagonal(self):
        a = np.arange(12).reshape((3, 4))
        assert_equal(a.diagonal(), [0, 5, 10])
        assert_equal(a.diagonal(0), [0, 5, 10])
        assert_equal(a.diagonal(1), [1, 6, 11])
        assert_equal(a.diagonal(-1), [4, 9])

        b = np.arange(8).reshape((2, 2, 2))
        assert_equal(b.diagonal(), [[0, 6], [1, 7]])
        assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
        assert_equal(b.diagonal(1), [[2], [3]])
        assert_equal(b.diagonal(-1), [[4], [5]])
        assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
        assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
        assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
        assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
        # Order of axis argument doesn't matter:
        assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])

    def test_diagonal_view_notwriteable(self):
        # this test is only for 1.9, the diagonal view will be
        # writeable in 1.10.
        a = np.eye(3).diagonal()
        assert_(not a.flags.writeable)
        assert_(not a.flags.owndata)

        a = np.diagonal(np.eye(3))
        assert_(not a.flags.writeable)
        assert_(not a.flags.owndata)

        a = np.diag(np.eye(3))
        assert_(not a.flags.writeable)
        assert_(not a.flags.owndata)

    def test_diagonal_memleak(self):
        # Regression test for a bug that crept in at one point
        a = np.zeros((100, 100))
        assert_(sys.getrefcount(a) < 50)
        for i in range(100):
            a.diagonal()
        assert_(sys.getrefcount(a) < 50)

    def test_trace(self):
        a = np.arange(12).reshape((3, 4))
        assert_equal(a.trace(), 15)
        assert_equal(a.trace(0), 15)
        assert_equal(a.trace(1), 18)
        assert_equal(a.trace(-1), 13)

        b = np.arange(8).reshape((2, 2, 2))
        assert_equal(b.trace(), [6, 8])
        assert_equal(b.trace(0), [6, 8])
        assert_equal(b.trace(1), [2, 3])
        assert_equal(b.trace(-1), [4, 5])
        assert_equal(b.trace(0, 0, 1), [6, 8])
        assert_equal(b.trace(0, 0, 2), [5, 9])
        assert_equal(b.trace(0, 1, 2), [3, 11])
        assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3])

    def test_trace_subclass(self):
        # The class would need to overwrite trace to ensure single-element
        # output also has the right subclass.
        class MyArray(np.ndarray):
            pass

        b = np.arange(8).reshape((2, 2, 2)).view(MyArray)
        t = b.trace()
        assert isinstance(t, MyArray)

    def test_put(self):
        icodes = np.typecodes['AllInteger']
        fcodes = np.typecodes['AllFloat']
        for dt in icodes + fcodes + 'O':
            tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt)

            # test 1-d
            a = np.zeros(6, dtype=dt)
            a.put([1, 3, 5], [1, 3, 5])
            assert_equal(a, tgt)

            # test 2-d
            a = np.zeros((2, 3), dtype=dt)
            a.put([1, 3, 5], [1, 3, 5])
            assert_equal(a, tgt.reshape(2, 3))

        for dt in '?':
            tgt = np.array([False, True, False, True, False, True], dtype=dt)

            # test 1-d
            a = np.zeros(6, dtype=dt)
            a.put([1, 3, 5], [True]*3)
            assert_equal(a, tgt)

            # test 2-d
            a = np.zeros((2, 3), dtype=dt)
            a.put([1, 3, 5], [True]*3)
            assert_equal(a, tgt.reshape(2, 3))

        # check must be writeable
        a = np.zeros(6)
        a.flags.writeable = False
        assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5])

        # when calling np.put, make sure a
        # TypeError is raised if the object
        # isn't an ndarray
        bad_array = [1, 2, 3]
        assert_raises(TypeError, np.put, bad_array, [0, 2], 5)

    def test_ravel(self):
        a = np.array([[0, 1], [2, 3]])
        assert_equal(a.ravel(), [0, 1, 2, 3])
        assert_(not a.ravel().flags.owndata)
        assert_equal(a.ravel('F'), [0, 2, 1, 3])
        assert_equal(a.ravel(order='C'), [0, 1, 2, 3])
        assert_equal(a.ravel(order='F'), [0, 2, 1, 3])
        assert_equal(a.ravel(order='A'), [0, 1, 2, 3])
        assert_(not a.ravel(order='A').flags.owndata)
        assert_equal(a.ravel(order='K'), [0, 1, 2, 3])
        assert_(not a.ravel(order='K').flags.owndata)
        assert_equal(a.ravel(), a.reshape(-1))

        a = np.array([[0, 1], [2, 3]], order='F')
        assert_equal(a.ravel(), [0, 1, 2, 3])
        assert_equal(a.ravel(order='A'), [0, 2, 1, 3])
        assert_equal(a.ravel(order='K'), [0, 2, 1, 3])
        assert_(not a.ravel(order='A').flags.owndata)
        assert_(not a.ravel(order='K').flags.owndata)
        assert_equal(a.ravel(), a.reshape(-1))
        assert_equal(a.ravel(order='A'), a.reshape(-1, order='A'))

        a = np.array([[0, 1], [2, 3]])[::-1, :]
        assert_equal(a.ravel(), [2, 3, 0, 1])
        assert_equal(a.ravel(order='C'), [2, 3, 0, 1])
        assert_equal(a.ravel(order='F'), [2, 0, 3, 1])
        assert_equal(a.ravel(order='A'), [2, 3, 0, 1])
        # 'K' doesn't reverse the axes of negative strides
        assert_equal(a.ravel(order='K'), [2, 3, 0, 1])
        assert_(a.ravel(order='K').flags.owndata)

        # Test simple 1-d copy behaviour:
        a = np.arange(10)[::2]
        assert_(a.ravel('K').flags.owndata)
        assert_(a.ravel('C').flags.owndata)
        assert_(a.ravel('F').flags.owndata)

        # Not contiguous and 1-sized axis with non matching stride
        a = np.arange(2**3 * 2)[::2]
        a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
        strides = list(a.strides)
        strides[1] = 123
        a.strides = strides
        assert_(a.ravel(order='K').flags.owndata)
        assert_equal(a.ravel('K'), np.arange(0, 15, 2))

        # contiguous and 1-sized axis with non matching stride works:
        a = np.arange(2**3)
        a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
        strides = list(a.strides)
        strides[1] = 123
        a.strides = strides
        assert_(np.may_share_memory(a.ravel(order='K'), a))
        assert_equal(a.ravel(order='K'), np.arange(2**3))

        # Test negative strides (not very interesting since non-contiguous):
        a = np.arange(4)[::-1].reshape(2, 2)
        assert_(a.ravel(order='C').flags.owndata)
        assert_(a.ravel(order='K').flags.owndata)
        assert_equal(a.ravel('C'), [3, 2, 1, 0])
        assert_equal(a.ravel('K'), [3, 2, 1, 0])

        # 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING):
        a = np.array([[1]])
        a.strides = (123, 432)
        # If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing
        # them up on purpose:
        if np.ones(1).strides == (8,):
            assert_(np.may_share_memory(a.ravel('K'), a))
            assert_equal(a.ravel('K').strides, (a.dtype.itemsize,))

        for order in ('C', 'F', 'A', 'K'):
            # 0-d corner case:
            a = np.array(0)
            assert_equal(a.ravel(order), [0])
            assert_(np.may_share_memory(a.ravel(order), a))

        # Test that certain non-inplace ravels work right (mostly) for 'K':
        b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2)
        a = b[..., ::2]
        assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28])
        assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28])
        assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28])
        assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28])

        a = b[::2, ...]
        assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14])
        assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14])
        assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14])
        assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14])

    def test_ravel_subclass(self):
        class ArraySubclass(np.ndarray):
            pass

        a = np.arange(10).view(ArraySubclass)
        assert_(isinstance(a.ravel('C'), ArraySubclass))
        assert_(isinstance(a.ravel('F'), ArraySubclass))
        assert_(isinstance(a.ravel('A'), ArraySubclass))
        assert_(isinstance(a.ravel('K'), ArraySubclass))

        a = np.arange(10)[::2].view(ArraySubclass)
        assert_(isinstance(a.ravel('C'), ArraySubclass))
        assert_(isinstance(a.ravel('F'), ArraySubclass))
        assert_(isinstance(a.ravel('A'), ArraySubclass))
        assert_(isinstance(a.ravel('K'), ArraySubclass))

    def test_swapaxes(self):
        a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
        idx = np.indices(a.shape)
        assert_(a.flags['OWNDATA'])
        b = a.copy()
        # check exceptions
        assert_raises(ValueError, a.swapaxes, -5, 0)
        assert_raises(ValueError, a.swapaxes, 4, 0)
        assert_raises(ValueError, a.swapaxes, 0, -5)
        assert_raises(ValueError, a.swapaxes, 0, 4)

        for i in range(-4, 4):
            for j in range(-4, 4):
                for k, src in enumerate((a, b)):
                    c = src.swapaxes(i, j)
                    # check shape
                    shape = list(src.shape)
                    shape[i] = src.shape[j]
                    shape[j] = src.shape[i]
                    assert_equal(c.shape, shape, str((i, j, k)))
                    # check array contents
                    i0, i1, i2, i3 = [dim-1 for dim in c.shape]
                    j0, j1, j2, j3 = [dim-1 for dim in src.shape]
                    assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]],
                                 c[idx[i0], idx[i1], idx[i2], idx[i3]],
                                 str((i, j, k)))
                    # check a view is always returned, gh-5260
                    assert_(not c.flags['OWNDATA'], str((i, j, k)))
                    # check on non-contiguous input array
                    if k == 1:
                        b = c

    def test_conjugate(self):
        a = np.array([1-1j, 1+1j, 23+23.0j])
        ac = a.conj()
        assert_equal(a.real, ac.real)
        assert_equal(a.imag, -ac.imag)
        assert_equal(ac, a.conjugate())
        assert_equal(ac, np.conjugate(a))

        a = np.array([1-1j, 1+1j, 23+23.0j], 'F')
        ac = a.conj()
        assert_equal(a.real, ac.real)
        assert_equal(a.imag, -ac.imag)
        assert_equal(ac, a.conjugate())
        assert_equal(ac, np.conjugate(a))

        a = np.array([1, 2, 3])
        ac = a.conj()
        assert_equal(a, ac)
        assert_equal(ac, a.conjugate())
        assert_equal(ac, np.conjugate(a))

        a = np.array([1.0, 2.0, 3.0])
        ac = a.conj()
        assert_equal(a, ac)
        assert_equal(ac, a.conjugate())
        assert_equal(ac, np.conjugate(a))

        a = np.array([1-1j, 1+1j, 1, 2.0], object)
        ac = a.conj()
        assert_equal(ac, [k.conjugate() for k in a])
        assert_equal(ac, a.conjugate())
        assert_equal(ac, np.conjugate(a))

        a = np.array([1-1j, 1, 2.0, 'f'], object)
        assert_raises(AttributeError, lambda: a.conj())
        assert_raises(AttributeError, lambda: a.conjugate())

class TestBinop(object):
    def test_inplace(self):
        # test refcount 1 inplace conversion
        assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]),
                                  [0.5, 1.0])

        d = np.array([0.5, 0.5])[::2]
        assert_array_almost_equal(d * (d * np.array([1.0, 2.0])),
                                  [0.25, 0.5])

        a = np.array([0.5])
        b = np.array([0.5])
        c = a + b
        c = a - b
        c = a * b
        c = a / b
        assert_equal(a, b)
        assert_almost_equal(c, 1.)

        c = a + b * 2. / b * a - a / b
        assert_equal(a, b)
        assert_equal(c, 0.5)

        # true divide
        a = np.array([5])
        b = np.array([3])
        c = (a * a) / b

        assert_almost_equal(c, 25 / 3)
        assert_equal(a, 5)
        assert_equal(b, 3)

    def test_extension_incref_elide(self):
        # test extension (e.g. cython) calling PyNumber_* slots without
        # increasing the reference counts
        #
        # def incref_elide(a):
        #    d = input.copy() # refcount 1
        #    return d, d + d # PyNumber_Add without increasing refcount
        from numpy.core.multiarray_tests import incref_elide
        d = np.ones(5)
        orig, res = incref_elide(d)
        # the return original should not be changed to an inplace operation
        assert_array_equal(orig, d)
        assert_array_equal(res, d + d)

    def test_extension_incref_elide_stack(self):
        # scanning if the refcount == 1 object is on the python stack to check
        # that we are called directly from python is flawed as object may still
        # be above the stack pointer and we have no access to the top of it
        #
        # def incref_elide_l(d):
        #    return l[4] + l[4] # PyNumber_Add without increasing refcount
        from numpy.core.multiarray_tests import incref_elide_l
        # padding with 1 makes sure the object on the stack is not overwriten
        l = [1, 1, 1, 1, np.ones(5)]
        res = incref_elide_l(l)
        # the return original should not be changed to an inplace operation
        assert_array_equal(l[4], np.ones(5))
        assert_array_equal(res, l[4] + l[4])

    def test_ufunc_override_rop_precedence(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check that __rmul__ and other right-hand operations have
        # precedence over __numpy_ufunc__

        ops = {
            '__add__':      ('__radd__', np.add, True),
            '__sub__':      ('__rsub__', np.subtract, True),
            '__mul__':      ('__rmul__', np.multiply, True),
            '__truediv__':  ('__rtruediv__', np.true_divide, True),
            '__floordiv__': ('__rfloordiv__', np.floor_divide, True),
            '__mod__':      ('__rmod__', np.remainder, True),
            '__divmod__':   ('__rdivmod__', None, False),
            '__pow__':      ('__rpow__', np.power, True),
            '__lshift__':   ('__rlshift__', np.left_shift, True),
            '__rshift__':   ('__rrshift__', np.right_shift, True),
            '__and__':      ('__rand__', np.bitwise_and, True),
            '__xor__':      ('__rxor__', np.bitwise_xor, True),
            '__or__':       ('__ror__', np.bitwise_or, True),
            '__ge__':       ('__le__', np.less_equal, False),
            '__gt__':       ('__lt__', np.less, False),
            '__le__':       ('__ge__', np.greater_equal, False),
            '__lt__':       ('__gt__', np.greater, False),
            '__eq__':       ('__eq__', np.equal, False),
            '__ne__':       ('__ne__', np.not_equal, False),
        }

        class OtherNdarraySubclass(np.ndarray):
            pass

        class OtherNdarraySubclassWithOverride(np.ndarray):
            def __numpy_ufunc__(self, *a, **kw):
                raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have "
                                      "been called!") % (a, kw))

        def check(op_name, ndsubclass):
            rop_name, np_op, has_iop = ops[op_name]

            if has_iop:
                iop_name = '__i' + op_name[2:]
                iop = getattr(operator, iop_name)

            if op_name == "__divmod__":
                op = divmod
            else:
                op = getattr(operator, op_name)

            # Dummy class
            def __init__(self, *a, **kw):
                pass

            def __numpy_ufunc__(self, *a, **kw):
                raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have "
                                      "been called!") % (a, kw))

            def __op__(self, *other):
                return "op"

            def __rop__(self, *other):
                return "rop"

            if ndsubclass:
                bases = (np.ndarray,)
            else:
                bases = (object,)

            dct = {'__init__': __init__,
                   '__numpy_ufunc__': __numpy_ufunc__,
                   op_name: __op__}
            if op_name != rop_name:
                dct[rop_name] = __rop__

            cls = type("Rop" + rop_name, bases, dct)

            # Check behavior against both bare ndarray objects and a
            # ndarray subclasses with and without their own override
            obj = cls((1,), buffer=np.ones(1,))

            arr_objs = [np.array([1]),
                        np.array([2]).view(OtherNdarraySubclass),
                        np.array([3]).view(OtherNdarraySubclassWithOverride),
                        ]

            for arr in arr_objs:
                err_msg = "%r %r" % (op_name, arr,)

                # Check that ndarray op gives up if it sees a non-subclass
                if not isinstance(obj, arr.__class__):
                    assert_equal(getattr(arr, op_name)(obj),
                                 NotImplemented, err_msg=err_msg)

                # Check that the Python binops have priority
                assert_equal(op(obj, arr), "op", err_msg=err_msg)
                if op_name == rop_name:
                    assert_equal(op(arr, obj), "op", err_msg=err_msg)
                else:
                    assert_equal(op(arr, obj), "rop", err_msg=err_msg)

                # Check that Python binops have priority also for in-place ops
                if has_iop:
                    assert_equal(getattr(arr, iop_name)(obj),
                                 NotImplemented, err_msg=err_msg)
                    if op_name != "__pow__":
                        # inplace pow requires the other object to be
                        # integer-like?
                        assert_equal(iop(arr, obj), "rop", err_msg=err_msg)

                # Check that ufunc call __numpy_ufunc__ normally
                if np_op is not None:
                    assert_raises(AssertionError, np_op, arr, obj,
                                  err_msg=err_msg)
                    assert_raises(AssertionError, np_op, obj, arr,
                                  err_msg=err_msg)

        # Check all binary operations
        for op_name in sorted(ops.keys()):
            yield check, op_name, True
            yield check, op_name, False

    def test_ufunc_override_rop_simple(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check parts of the binary op overriding behavior in an
        # explicit test case that is easier to understand.
        class SomeClass(object):
            def __numpy_ufunc__(self, *a, **kw):
                return "ufunc"

            def __mul__(self, other):
                return 123

            def __rmul__(self, other):
                return 321

            def __rsub__(self, other):
                return "no subs for me"

            def __gt__(self, other):
                return "yep"

            def __lt__(self, other):
                return "nope"

        class SomeClass2(SomeClass, np.ndarray):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                if ufunc is np.multiply or ufunc is np.bitwise_and:
                    return "ufunc"
                else:
                    inputs = list(inputs)
                    if i < len(inputs):
                        inputs[i] = np.asarray(self)
                    func = getattr(ufunc, method)
                    if ('out' in kw) and (kw['out'] is not None):
                        kw['out'] = np.asarray(kw['out'])
                    r = func(*inputs, **kw)
                    x = self.__class__(r.shape, dtype=r.dtype)
                    x[...] = r
                    return x

        class SomeClass3(SomeClass2):
            def __rsub__(self, other):
                return "sub for me"

        arr = np.array([0])
        obj = SomeClass()
        obj2 = SomeClass2((1,), dtype=np.int_)
        obj2[0] = 9
        obj3 = SomeClass3((1,), dtype=np.int_)
        obj3[0] = 4

        # obj is first, so should get to define outcome.
        assert_equal(obj * arr, 123)
        # obj is second, but has __numpy_ufunc__ and defines __rmul__.
        assert_equal(arr * obj, 321)
        # obj is second, but has __numpy_ufunc__ and defines __rsub__.
        assert_equal(arr - obj, "no subs for me")
        # obj is second, but has __numpy_ufunc__ and defines __lt__.
        assert_equal(arr > obj, "nope")
        # obj is second, but has __numpy_ufunc__ and defines __gt__.
        assert_equal(arr < obj, "yep")
        # Called as a ufunc, obj.__numpy_ufunc__ is used.
        assert_equal(np.multiply(arr, obj), "ufunc")
        # obj is second, but has __numpy_ufunc__ and defines __rmul__.
        arr *= obj
        assert_equal(arr, 321)

        # obj2 is an ndarray subclass, so CPython takes care of the same rules.
        assert_equal(obj2 * arr, 123)
        assert_equal(arr * obj2, 321)
        assert_equal(arr - obj2, "no subs for me")
        assert_equal(arr > obj2, "nope")
        assert_equal(arr < obj2, "yep")
        # Called as a ufunc, obj2.__numpy_ufunc__ is called.
        assert_equal(np.multiply(arr, obj2), "ufunc")
        # Also when the method is not overridden.
        assert_equal(arr & obj2, "ufunc")
        arr *= obj2
        assert_equal(arr, 321)

        obj2 += 33
        assert_equal(obj2[0], 42)
        assert_equal(obj2.sum(), 42)
        assert_(isinstance(obj2, SomeClass2))

        # Obj3 is subclass that defines __rsub__.  CPython calls it.
        assert_equal(arr - obj3, "sub for me")
        assert_equal(obj2 - obj3, "sub for me")
        # obj3 is a subclass that defines __rmul__.  CPython calls it.
        assert_equal(arr * obj3, 321)
        # But not here, since obj3.__rmul__ is obj2.__rmul__.
        assert_equal(obj2 * obj3, 123)
        # And of course, here obj3.__mul__ should be called.
        assert_equal(obj3 * obj2, 123)
        # obj3 defines __numpy_ufunc__ but obj3.__radd__ is obj2.__radd__.
        # (and both are just ndarray.__radd__); see #4815.
        res = obj2 + obj3
        assert_equal(res, 46)
        assert_(isinstance(res, SomeClass2))
        # Since obj3 is a subclass, it should have precedence, like CPython
        # would give, even though obj2 has __numpy_ufunc__ and __radd__.
        # See gh-4815 and gh-5747.
        res = obj3 + obj2
        assert_equal(res, 46)
        assert_(isinstance(res, SomeClass3))

    def test_ufunc_override_normalize_signature(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # gh-5674
        class SomeClass(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return kw

        a = SomeClass()
        kw = np.add(a, [1])
        assert_('sig' not in kw and 'signature' not in kw)
        kw = np.add(a, [1], sig='ii->i')
        assert_('sig' not in kw and 'signature' in kw)
        assert_equal(kw['signature'], 'ii->i')
        kw = np.add(a, [1], signature='ii->i')
        assert_('sig' not in kw and 'signature' in kw)
        assert_equal(kw['signature'], 'ii->i')

    def test_numpy_ufunc_index(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # Check that index is set appropriately, also if only an output
        # is passed on (latter is another regression tests for github bug 4753)
        class CheckIndex(object):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                return i

        a = CheckIndex()
        dummy = np.arange(2.)
        # 1 input, 1 output
        assert_equal(np.sin(a), 0)
        assert_equal(np.sin(dummy, a), 1)
        assert_equal(np.sin(dummy, out=a), 1)
        assert_equal(np.sin(dummy, out=(a,)), 1)
        assert_equal(np.sin(a, a), 0)
        assert_equal(np.sin(a, out=a), 0)
        assert_equal(np.sin(a, out=(a,)), 0)
        # 1 input, 2 outputs
        assert_equal(np.modf(dummy, a), 1)
        assert_equal(np.modf(dummy, None, a), 2)
        assert_equal(np.modf(dummy, dummy, a), 2)
        assert_equal(np.modf(dummy, out=a), 1)
        assert_equal(np.modf(dummy, out=(a,)), 1)
        assert_equal(np.modf(dummy, out=(a, None)), 1)
        assert_equal(np.modf(dummy, out=(a, dummy)), 1)
        assert_equal(np.modf(dummy, out=(None, a)), 2)
        assert_equal(np.modf(dummy, out=(dummy, a)), 2)
        assert_equal(np.modf(a, out=(dummy, a)), 0)
        # 2 inputs, 1 output
        assert_equal(np.add(a, dummy), 0)
        assert_equal(np.add(dummy, a), 1)
        assert_equal(np.add(dummy, dummy, a), 2)
        assert_equal(np.add(dummy, a, a), 1)
        assert_equal(np.add(dummy, dummy, out=a), 2)
        assert_equal(np.add(dummy, dummy, out=(a,)), 2)
        assert_equal(np.add(a, dummy, out=a), 0)

    def test_out_override(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        # regression test for github bug 4753
        class OutClass(np.ndarray):
            def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw):
                if 'out' in kw:
                    tmp_kw = kw.copy()
                    tmp_kw.pop('out')
                    func = getattr(ufunc, method)
                    kw['out'][...] = func(*inputs, **tmp_kw)

        A = np.array([0]).view(OutClass)
        B = np.array([5])
        C = np.array([6])
        np.multiply(C, B, A)
        assert_equal(A[0], 30)
        assert_(isinstance(A, OutClass))
        A[0] = 0
        np.multiply(C, B, out=A)
        assert_equal(A[0], 30)
        assert_(isinstance(A, OutClass))


class TestCAPI(TestCase):
    def test_IsPythonScalar(self):
        from numpy.core.multiarray_tests import IsPythonScalar
        assert_(IsPythonScalar(b'foobar'))
        assert_(IsPythonScalar(1))
        assert_(IsPythonScalar(2**80))
        assert_(IsPythonScalar(2.))
        assert_(IsPythonScalar("a"))


class TestSubscripting(TestCase):
    def test_test_zero_rank(self):
        x = np.array([1, 2, 3])
        self.assertTrue(isinstance(x[0], np.int_))
        if sys.version_info[0] < 3:
            self.assertTrue(isinstance(x[0], int))
        self.assertTrue(type(x[0, ...]) is np.ndarray)


class TestPickling(TestCase):
    def test_roundtrip(self):
        import pickle
        carray = np.array([[2, 9], [7, 0], [3, 8]])
        DATA = [
            carray,
            np.transpose(carray),
            np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int),
                                               ('c', float)])
        ]

        for a in DATA:
            assert_equal(a, pickle.loads(a.dumps()), err_msg="%r" % a)

    def _loads(self, obj):
        if sys.version_info[0] >= 3:
            return np.loads(obj, encoding='latin1')
        else:
            return np.loads(obj)

    # version 0 pickles, using protocol=2 to pickle
    # version 0 doesn't have a version field
    def test_version0_int8(self):
        s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
        a = np.array([1, 2, 3, 4], dtype=np.int8)
        p = self._loads(asbytes(s))
        assert_equal(a, p)

    def test_version0_float32(self):
        s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
        a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
        p = self._loads(asbytes(s))
        assert_equal(a, p)

    def test_version0_object(self):
        s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
        a = np.array([{'a': 1}, {'b': 2}])
        p = self._loads(asbytes(s))
        assert_equal(a, p)

    # version 1 pickles, using protocol=2 to pickle
    def test_version1_int8(self):
        s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
        a = np.array([1, 2, 3, 4], dtype=np.int8)
        p = self._loads(asbytes(s))
        assert_equal(a, p)

    def test_version1_float32(self):
        s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
        a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
        p = self._loads(asbytes(s))
        assert_equal(a, p)

    def test_version1_object(self):
        s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
        a = np.array([{'a': 1}, {'b': 2}])
        p = self._loads(asbytes(s))
        assert_equal(a, p)

    def test_subarray_int_shape(self):
        s = "cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb."
        a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)])
        p = self._loads(asbytes(s))
        assert_equal(a, p)


class TestFancyIndexing(TestCase):
    def test_list(self):
        x = np.ones((1, 1))
        x[:, [0]] = 2.0
        assert_array_equal(x, np.array([[2.0]]))

        x = np.ones((1, 1, 1))
        x[:, :, [0]] = 2.0
        assert_array_equal(x, np.array([[[2.0]]]))

    def test_tuple(self):
        x = np.ones((1, 1))
        x[:, (0,)] = 2.0
        assert_array_equal(x, np.array([[2.0]]))
        x = np.ones((1, 1, 1))
        x[:, :, (0,)] = 2.0
        assert_array_equal(x, np.array([[[2.0]]]))

    def test_mask(self):
        x = np.array([1, 2, 3, 4])
        m = np.array([0, 1, 0, 0], bool)
        assert_array_equal(x[m], np.array([2]))

    def test_mask2(self):
        x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
        m = np.array([0, 1], bool)
        m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
        m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
        assert_array_equal(x[m], np.array([[5, 6, 7, 8]]))
        assert_array_equal(x[m2], np.array([2, 5]))
        assert_array_equal(x[m3], np.array([2]))

    def test_assign_mask(self):
        x = np.array([1, 2, 3, 4])
        m = np.array([0, 1, 0, 0], bool)
        x[m] = 5
        assert_array_equal(x, np.array([1, 5, 3, 4]))

    def test_assign_mask2(self):
        xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
        m = np.array([0, 1], bool)
        m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
        m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
        x = xorig.copy()
        x[m] = 10
        assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]]))
        x = xorig.copy()
        x[m2] = 10
        assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]]))
        x = xorig.copy()
        x[m3] = 10
        assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]]))


class TestStringCompare(TestCase):
    def test_string(self):
        g1 = np.array(["This", "is", "example"])
        g2 = np.array(["This", "was", "example"])
        assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])

    def test_mixed(self):
        g1 = np.array(["spam", "spa", "spammer", "and eggs"])
        g2 = "spam"
        assert_array_equal(g1 == g2, [x == g2 for x in g1])
        assert_array_equal(g1 != g2, [x != g2 for x in g1])
        assert_array_equal(g1 < g2, [x < g2 for x in g1])
        assert_array_equal(g1 > g2, [x > g2 for x in g1])
        assert_array_equal(g1 <= g2, [x <= g2 for x in g1])
        assert_array_equal(g1 >= g2, [x >= g2 for x in g1])

    def test_unicode(self):
        g1 = np.array([sixu("This"), sixu("is"), sixu("example")])
        g2 = np.array([sixu("This"), sixu("was"), sixu("example")])
        assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 < g2,  [g1[i] < g2[i] for i in [0, 1, 2]])
        assert_array_equal(g1 > g2,  [g1[i] > g2[i] for i in [0, 1, 2]])


class TestArgmax(TestCase):

    nan_arr = [
        ([0, 1, 2, 3, np.nan], 4),
        ([0, 1, 2, np.nan, 3], 3),
        ([np.nan, 0, 1, 2, 3], 0),
        ([np.nan, 0, np.nan, 2, 3], 0),
        ([0, 1, 2, 3, complex(0, np.nan)], 4),
        ([0, 1, 2, 3, complex(np.nan, 0)], 4),
        ([0, 1, 2, complex(np.nan, 0), 3], 3),
        ([0, 1, 2, complex(0, np.nan), 3], 3),
        ([complex(0, np.nan), 0, 1, 2, 3], 0),
        ([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
        ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
        ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
        ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),

        ([complex(0, 0), complex(0, 2), complex(0, 1)], 1),
        ([complex(1, 0), complex(0, 2), complex(0, 1)], 0),
        ([complex(1, 0), complex(0, 2), complex(1, 1)], 2),

        ([np.datetime64('1923-04-14T12:43:12'),
          np.datetime64('1994-06-21T14:43:15'),
          np.datetime64('2001-10-15T04:10:32'),
          np.datetime64('1995-11-25T16:02:16'),
          np.datetime64('2005-01-04T03:14:12'),
          np.datetime64('2041-12-03T14:05:03')], 5),
        ([np.datetime64('1935-09-14T04:40:11'),
          np.datetime64('1949-10-12T12:32:11'),
          np.datetime64('2010-01-03T05:14:12'),
          np.datetime64('2015-11-20T12:20:59'),
          np.datetime64('1932-09-23T10:10:13'),
          np.datetime64('2014-10-10T03:50:30')], 3),
        # Assorted tests with NaTs
        ([np.datetime64('NaT'),
          np.datetime64('NaT'),
          np.datetime64('2010-01-03T05:14:12'),
          np.datetime64('NaT'),
          np.datetime64('2015-09-23T10:10:13'),
          np.datetime64('1932-10-10T03:50:30')], 4),
        ([np.datetime64('2059-03-14T12:43:12'),
          np.datetime64('1996-09-21T14:43:15'),
          np.datetime64('NaT'),
          np.datetime64('2022-12-25T16:02:16'),
          np.datetime64('1963-10-04T03:14:12'),
          np.datetime64('2013-05-08T18:15:23')], 0),
        ([np.timedelta64(2, 's'),
          np.timedelta64(1, 's'),
          np.timedelta64('NaT', 's'),
          np.timedelta64(3, 's')], 3),
        ([np.timedelta64('NaT', 's')] * 3, 0),

        ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
          timedelta(days=-1, seconds=23)], 0),
        ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
          timedelta(days=5, seconds=14)], 1),
        ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
          timedelta(days=10, seconds=43)], 2),

        ([False, False, False, False, True], 4),
        ([False, False, False, True, False], 3),
        ([True, False, False, False, False], 0),
        ([True, False, True, False, False], 0),
    ]

    def test_all(self):
        a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
        for i in range(a.ndim):
            amax = a.max(i)
            aargmax = a.argmax(i)
            axes = list(range(a.ndim))
            axes.remove(i)
            assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes))))

    def test_combinations(self):
        for arr, pos in self.nan_arr:
            assert_equal(np.argmax(arr), pos, err_msg="%r" % arr)
            assert_equal(arr[np.argmax(arr)], np.max(arr), err_msg="%r" % arr)

    def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmax, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmax(-1, out=out)
        assert_equal(out, a.argmax(-1))

    def test_argmax_unicode(self):
        d = np.zeros(6031, dtype='<U9')
        d[5942] = "as"
        assert_equal(d.argmax(), 5942)

    def test_np_vs_ndarray(self):
        # make sure both ndarray.argmax and numpy.argmax support out/axis args
        a = np.random.normal(size=(2,3))

        # check positional args
        out1 = np.zeros(2, dtype=int)
        out2 = np.zeros(2, dtype=int)
        assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2))
        assert_equal(out1, out2)

        # check keyword args
        out1 = np.zeros(3, dtype=int)
        out2 = np.zeros(3, dtype=int)
        assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0))
        assert_equal(out1, out2)

    def test_object_argmax_with_NULLs(self):
        # See gh-6032
        a = np.empty(4, dtype='O')
        ctypes.memset(a.ctypes.data, 0, a.nbytes)
        assert_equal(a.argmax(), 0)
        a[3] = 10
        assert_equal(a.argmax(), 3)
        a[1] = 30
        assert_equal(a.argmax(), 1)


class TestArgmin(TestCase):

    nan_arr = [
        ([0, 1, 2, 3, np.nan], 4),
        ([0, 1, 2, np.nan, 3], 3),
        ([np.nan, 0, 1, 2, 3], 0),
        ([np.nan, 0, np.nan, 2, 3], 0),
        ([0, 1, 2, 3, complex(0, np.nan)], 4),
        ([0, 1, 2, 3, complex(np.nan, 0)], 4),
        ([0, 1, 2, complex(np.nan, 0), 3], 3),
        ([0, 1, 2, complex(0, np.nan), 3], 3),
        ([complex(0, np.nan), 0, 1, 2, 3], 0),
        ([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
        ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
        ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
        ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),

        ([complex(0, 0), complex(0, 2), complex(0, 1)], 0),
        ([complex(1, 0), complex(0, 2), complex(0, 1)], 2),
        ([complex(1, 0), complex(0, 2), complex(1, 1)], 1),

        ([np.datetime64('1923-04-14T12:43:12'),
          np.datetime64('1994-06-21T14:43:15'),
          np.datetime64('2001-10-15T04:10:32'),
          np.datetime64('1995-11-25T16:02:16'),
          np.datetime64('2005-01-04T03:14:12'),
          np.datetime64('2041-12-03T14:05:03')], 0),
        ([np.datetime64('1935-09-14T04:40:11'),
          np.datetime64('1949-10-12T12:32:11'),
          np.datetime64('2010-01-03T05:14:12'),
          np.datetime64('2014-11-20T12:20:59'),
          np.datetime64('2015-09-23T10:10:13'),
          np.datetime64('1932-10-10T03:50:30')], 5),
        # Assorted tests with NaTs
        ([np.datetime64('NaT'),
          np.datetime64('NaT'),
          np.datetime64('2010-01-03T05:14:12'),
          np.datetime64('NaT'),
          np.datetime64('2015-09-23T10:10:13'),
          np.datetime64('1932-10-10T03:50:30')], 5),
        ([np.datetime64('2059-03-14T12:43:12'),
          np.datetime64('1996-09-21T14:43:15'),
          np.datetime64('NaT'),
          np.datetime64('2022-12-25T16:02:16'),
          np.datetime64('1963-10-04T03:14:12'),
          np.datetime64('2013-05-08T18:15:23')], 4),
        ([np.timedelta64(2, 's'),
          np.timedelta64(1, 's'),
          np.timedelta64('NaT', 's'),
          np.timedelta64(3, 's')], 1),
        ([np.timedelta64('NaT', 's')] * 3, 0),

        ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
          timedelta(days=-1, seconds=23)], 2),
        ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
          timedelta(days=5, seconds=14)], 0),
        ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
          timedelta(days=10, seconds=43)], 1),

        ([True, True, True, True, False], 4),
        ([True, True, True, False, True], 3),
        ([False, True, True, True, True], 0),
        ([False, True, False, True, True], 0),
    ]

    def test_all(self):
        a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
        for i in range(a.ndim):
            amin = a.min(i)
            aargmin = a.argmin(i)
            axes = list(range(a.ndim))
            axes.remove(i)
            assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes))))

    def test_combinations(self):
        for arr, pos in self.nan_arr:
            assert_equal(np.argmin(arr), pos, err_msg="%r" % arr)
            assert_equal(arr[np.argmin(arr)], np.min(arr), err_msg="%r" % arr)

    def test_minimum_signed_integers(self):

        a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8)
        assert_equal(np.argmin(a), 1)

        a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16)
        assert_equal(np.argmin(a), 1)

        a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32)
        assert_equal(np.argmin(a), 1)

        a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64)
        assert_equal(np.argmin(a), 1)

    def test_output_shape(self):
        # see also gh-616
        a = np.ones((10, 5))
        # Check some simple shape mismatches
        out = np.ones(11, dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones((2, 5), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        # these could be relaxed possibly (used to allow even the previous)
        out = np.ones((1, 10), dtype=np.int_)
        assert_raises(ValueError, a.argmin, -1, out)

        out = np.ones(10, dtype=np.int_)
        a.argmin(-1, out=out)
        assert_equal(out, a.argmin(-1))

    def test_argmin_unicode(self):
        d = np.ones(6031, dtype='<U9')
        d[6001] = "0"
        assert_equal(d.argmin(), 6001)

    def test_np_vs_ndarray(self):
        # make sure both ndarray.argmin and numpy.argmin support out/axis args
        a = np.random.normal(size=(2, 3))

        # check positional args
        out1 = np.zeros(2, dtype=int)
        out2 = np.ones(2, dtype=int)
        assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2))
        assert_equal(out1, out2)

        # check keyword args
        out1 = np.zeros(3, dtype=int)
        out2 = np.ones(3, dtype=int)
        assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0))
        assert_equal(out1, out2)

    def test_object_argmin_with_NULLs(self):
        # See gh-6032
        a = np.empty(4, dtype='O')
        ctypes.memset(a.ctypes.data, 0, a.nbytes)
        assert_equal(a.argmin(), 0)
        a[3] = 30
        assert_equal(a.argmin(), 3)
        a[1] = 10
        assert_equal(a.argmin(), 1)


class TestMinMax(TestCase):

    def test_scalar(self):
        assert_raises(ValueError, np.amax, 1, 1)
        assert_raises(ValueError, np.amin, 1, 1)

        assert_equal(np.amax(1, axis=0), 1)
        assert_equal(np.amin(1, axis=0), 1)
        assert_equal(np.amax(1, axis=None), 1)
        assert_equal(np.amin(1, axis=None), 1)

    def test_axis(self):
        assert_raises(ValueError, np.amax, [1, 2, 3], 1000)
        assert_equal(np.amax([[1, 2, 3]], axis=1), 3)

    def test_datetime(self):
        # NaTs are ignored
        for dtype in ('m8[s]', 'm8[Y]'):
            a = np.arange(10).astype(dtype)
            a[3] = 'NaT'
            assert_equal(np.amin(a), a[0])
            assert_equal(np.amax(a), a[9])
            a[0] = 'NaT'
            assert_equal(np.amin(a), a[1])
            assert_equal(np.amax(a), a[9])
            a.fill('NaT')
            assert_equal(np.amin(a), a[0])
            assert_equal(np.amax(a), a[0])


class TestNewaxis(TestCase):
    def test_basic(self):
        sk = np.array([0, -0.1, 0.1])
        res = 250*sk[:, np.newaxis]
        assert_almost_equal(res.ravel(), 250*sk)


class TestClip(TestCase):
    def _check_range(self, x, cmin, cmax):
        assert_(np.all(x >= cmin))
        assert_(np.all(x <= cmax))

    def _clip_type(self, type_group, array_max,
                   clip_min, clip_max, inplace=False,
                   expected_min=None, expected_max=None):
        if expected_min is None:
            expected_min = clip_min
        if expected_max is None:
            expected_max = clip_max

        for T in np.sctypes[type_group]:
            if sys.byteorder == 'little':
                byte_orders = ['=', '>']
            else:
                byte_orders = ['<', '=']

            for byteorder in byte_orders:
                dtype = np.dtype(T).newbyteorder(byteorder)

                x = (np.random.random(1000) * array_max).astype(dtype)
                if inplace:
                    x.clip(clip_min, clip_max, x)
                else:
                    x = x.clip(clip_min, clip_max)
                    byteorder = '='

                if x.dtype.byteorder == '|':
                    byteorder = '|'
                assert_equal(x.dtype.byteorder, byteorder)
                self._check_range(x, expected_min, expected_max)
        return x

    def test_basic(self):
        for inplace in [False, True]:
            self._clip_type(
                'float', 1024, -12.8, 100.2, inplace=inplace)
            self._clip_type(
                'float', 1024, 0, 0, inplace=inplace)

            self._clip_type(
                'int', 1024, -120, 100.5, inplace=inplace)
            self._clip_type(
                'int', 1024, 0, 0, inplace=inplace)

            self._clip_type(
                'uint', 1024, 0, 0, inplace=inplace)
            self._clip_type(
                'uint', 1024, -120, 100, inplace=inplace, expected_min=0)

    def test_record_array(self):
        rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
                       dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
        y = rec['x'].clip(-0.3, 0.5)
        self._check_range(y, -0.3, 0.5)

    def test_max_or_min(self):
        val = np.array([0, 1, 2, 3, 4, 5, 6, 7])
        x = val.clip(3)
        assert_(np.all(x >= 3))
        x = val.clip(min=3)
        assert_(np.all(x >= 3))
        x = val.clip(max=4)
        assert_(np.all(x <= 4))

    def test_nan(self):
        input_arr = np.array([-2., np.nan, 0.5, 3., 0.25, np.nan])
        result = input_arr.clip(-1, 1)
        expected = np.array([-1., np.nan, 0.5, 1., 0.25, np.nan])
        assert_array_equal(result, expected)


class TestCompress(TestCase):
    def test_axis(self):
        tgt = [[5, 6, 7, 8, 9]]
        arr = np.arange(10).reshape(2, 5)
        out = np.compress([0, 1], arr, axis=0)
        assert_equal(out, tgt)

        tgt = [[1, 3], [6, 8]]
        out = np.compress([0, 1, 0, 1, 0], arr, axis=1)
        assert_equal(out, tgt)

    def test_truncate(self):
        tgt = [[1], [6]]
        arr = np.arange(10).reshape(2, 5)
        out = np.compress([0, 1], arr, axis=1)
        assert_equal(out, tgt)

    def test_flatten(self):
        arr = np.arange(10).reshape(2, 5)
        out = np.compress([0, 1], arr)
        assert_equal(out, 1)


class TestPutmask(object):
    def tst_basic(self, x, T, mask, val):
        np.putmask(x, mask, val)
        assert_(np.all(x[mask] == T(val)))
        assert_(x.dtype == T)

    def test_ip_types(self):
        unchecked_types = [str, unicode, np.void, object]

        x = np.random.random(1000)*100
        mask = x < 40

        for val in [-100, 0, 15]:
            for types in np.sctypes.values():
                for T in types:
                    if T not in unchecked_types:
                        yield self.tst_basic, x.copy().astype(T), T, mask, val

    def test_mask_size(self):
        assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5)

    def tst_byteorder(self, dtype):
        x = np.array([1, 2, 3], dtype)
        np.putmask(x, [True, False, True], -1)
        assert_array_equal(x, [-1, 2, -1])

    def test_ip_byteorder(self):
        for dtype in ('>i4', '<i4'):
            yield self.tst_byteorder, dtype

    def test_record_array(self):
        # Note mixed byteorder.
        rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
                      dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
        np.putmask(rec['x'], [True, False], 10)
        assert_array_equal(rec['x'], [10, 5])
        assert_array_equal(rec['y'], [2, 4])
        assert_array_equal(rec['z'], [3, 3])
        np.putmask(rec['y'], [True, False], 11)
        assert_array_equal(rec['x'], [10, 5])
        assert_array_equal(rec['y'], [11, 4])
        assert_array_equal(rec['z'], [3, 3])


class TestTake(object):
    def tst_basic(self, x):
        ind = list(range(x.shape[0]))
        assert_array_equal(x.take(ind, axis=0), x)

    def test_ip_types(self):
        unchecked_types = [str, unicode, np.void, object]

        x = np.random.random(24)*100
        x.shape = 2, 3, 4
        for types in np.sctypes.values():
            for T in types:
                if T not in unchecked_types:
                    yield self.tst_basic, x.copy().astype(T)

    def test_raise(self):
        x = np.random.random(24)*100
        x.shape = 2, 3, 4
        assert_raises(IndexError, x.take, [0, 1, 2], axis=0)
        assert_raises(IndexError, x.take, [-3], axis=0)
        assert_array_equal(x.take([-1], axis=0)[0], x[1])

    def test_clip(self):
        x = np.random.random(24)*100
        x.shape = 2, 3, 4
        assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0])
        assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1])

    def test_wrap(self):
        x = np.random.random(24)*100
        x.shape = 2, 3, 4
        assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1])
        assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0])
        assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1])

    def tst_byteorder(self, dtype):
        x = np.array([1, 2, 3], dtype)
        assert_array_equal(x.take([0, 2, 1]), [1, 3, 2])

    def test_ip_byteorder(self):
        for dtype in ('>i4', '<i4'):
            yield self.tst_byteorder, dtype

    def test_record_array(self):
        # Note mixed byteorder.
        rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
                      dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
        rec1 = rec.take([1])
        assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0)


class TestLexsort(TestCase):
    def test_basic(self):
        a = [1, 2, 1, 3, 1, 5]
        b = [0, 4, 5, 6, 2, 3]
        idx = np.lexsort((b, a))
        expected_idx = np.array([0, 4, 2, 1, 3, 5])
        assert_array_equal(idx, expected_idx)

        x = np.vstack((b, a))
        idx = np.lexsort(x)
        assert_array_equal(idx, expected_idx)

        assert_array_equal(x[1][idx], np.sort(x[1]))

    def test_datetime(self):
        a = np.array([0,0,0], dtype='datetime64[D]')
        b = np.array([2,1,0], dtype='datetime64[D]')
        idx = np.lexsort((b, a))
        expected_idx = np.array([2, 1, 0])
        assert_array_equal(idx, expected_idx)

        a = np.array([0,0,0], dtype='timedelta64[D]')
        b = np.array([2,1,0], dtype='timedelta64[D]')
        idx = np.lexsort((b, a))
        expected_idx = np.array([2, 1, 0])
        assert_array_equal(idx, expected_idx)

    def test_object(self):  # gh-6312
        a = np.random.choice(10, 1000)
        b = np.random.choice(['abc', 'xy', 'wz', 'efghi', 'qwst', 'x'], 1000)

        for u in a, b:
            left = np.lexsort((u.astype('O'),))
            right = np.argsort(u, kind='mergesort')
            assert_array_equal(left, right)

        for u, v in (a, b), (b, a):
            idx = np.lexsort((u, v))
            assert_array_equal(idx, np.lexsort((u.astype('O'), v)))
            assert_array_equal(idx, np.lexsort((u, v.astype('O'))))
            u, v = np.array(u, dtype='object'), np.array(v, dtype='object')
            assert_array_equal(idx, np.lexsort((u, v)))

    def test_invalid_axis(self): # gh-7528
        x = np.linspace(0., 1., 42*3).reshape(42, 3)
        assert_raises(ValueError, np.lexsort, x, axis=2)

class TestIO(object):
    """Test tofile, fromfile, tobytes, and fromstring"""

    def setUp(self):
        shape = (2, 4, 3)
        rand = np.random.random
        self.x = rand(shape) + rand(shape).astype(np.complex)*1j
        self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan]
        self.dtype = self.x.dtype
        self.tempdir = tempfile.mkdtemp()
        self.filename = tempfile.mktemp(dir=self.tempdir)

    def tearDown(self):
        shutil.rmtree(self.tempdir)

    def test_nofile(self):
        # this should probably be supported as a file
        # but for now test for proper errors
        b = io.BytesIO()
        assert_raises(IOError, np.fromfile, b, np.uint8, 80)
        d = np.ones(7);
        assert_raises(IOError, lambda x: x.tofile(b), d)

    def test_bool_fromstring(self):
        v = np.array([True, False, True, False], dtype=np.bool_)
        y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_)
        assert_array_equal(v, y)

    def test_uint64_fromstring(self):
        d = np.fromstring("9923372036854775807 104783749223640",
                          dtype=np.uint64, sep=' ')
        e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64)
        assert_array_equal(d, e)

    def test_int64_fromstring(self):
        d = np.fromstring("-25041670086757 104783749223640",
                          dtype=np.int64, sep=' ')
        e = np.array([-25041670086757, 104783749223640], dtype=np.int64)
        assert_array_equal(d, e)

    def test_empty_files_binary(self):
        f = open(self.filename, 'w')
        f.close()
        y = np.fromfile(self.filename)
        assert_(y.size == 0, "Array not empty")

    def test_empty_files_text(self):
        f = open(self.filename, 'w')
        f.close()
        y = np.fromfile(self.filename, sep=" ")
        assert_(y.size == 0, "Array not empty")

    def test_roundtrip_file(self):
        f = open(self.filename, 'wb')
        self.x.tofile(f)
        f.close()
        # NB. doesn't work with flush+seek, due to use of C stdio
        f = open(self.filename, 'rb')
        y = np.fromfile(f, dtype=self.dtype)
        f.close()
        assert_array_equal(y, self.x.flat)

    def test_roundtrip_filename(self):
        self.x.tofile(self.filename)
        y = np.fromfile(self.filename, dtype=self.dtype)
        assert_array_equal(y, self.x.flat)

    def test_roundtrip_binary_str(self):
        s = self.x.tobytes()
        y = np.fromstring(s, dtype=self.dtype)
        assert_array_equal(y, self.x.flat)

        s = self.x.tobytes('F')
        y = np.fromstring(s, dtype=self.dtype)
        assert_array_equal(y, self.x.flatten('F'))

    def test_roundtrip_str(self):
        x = self.x.real.ravel()
        s = "@".join(map(str, x))
        y = np.fromstring(s, sep="@")
        # NB. str imbues less precision
        nan_mask = ~np.isfinite(x)
        assert_array_equal(x[nan_mask], y[nan_mask])
        assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5)

    def test_roundtrip_repr(self):
        x = self.x.real.ravel()
        s = "@".join(map(repr, x))
        y = np.fromstring(s, sep="@")
        assert_array_equal(x, y)

    def test_unbuffered_fromfile(self):
        # gh-6246
        self.x.tofile(self.filename)

        def fail(*args, **kwargs):
            raise io.IOError('Can not tell or seek')

        f = io.open(self.filename, 'rb', buffering=0)
        f.seek = fail
        f.tell = fail
        y = np.fromfile(self.filename, dtype=self.dtype)
        assert_array_equal(y, self.x.flat)

    def test_largish_file(self):
        # check the fallocate path on files > 16MB
        d = np.zeros(4 * 1024 ** 2)
        d.tofile(self.filename)
        assert_equal(os.path.getsize(self.filename), d.nbytes)
        assert_array_equal(d, np.fromfile(self.filename));
        # check offset
        with open(self.filename, "r+b") as f:
            f.seek(d.nbytes)
            d.tofile(f)
            assert_equal(os.path.getsize(self.filename), d.nbytes * 2)
        # check append mode (gh-8329)
        open(self.filename, "w").close() # delete file contents
        with open(self.filename, "ab") as f:
            d.tofile(f)
        assert_array_equal(d, np.fromfile(self.filename))
        with open(self.filename, "ab") as f:
            d.tofile(f)
        assert_equal(os.path.getsize(self.filename), d.nbytes * 2)


    def test_file_position_after_fromfile(self):
        # gh-4118
        sizes = [io.DEFAULT_BUFFER_SIZE//8,
                 io.DEFAULT_BUFFER_SIZE,
                 io.DEFAULT_BUFFER_SIZE*8]

        for size in sizes:
            f = open(self.filename, 'wb')
            f.seek(size-1)
            f.write(b'\0')
            f.close()

            for mode in ['rb', 'r+b']:
                err_msg = "%d %s" % (size, mode)

                f = open(self.filename, mode)
                f.read(2)
                np.fromfile(f, dtype=np.float64, count=1)
                pos = f.tell()
                f.close()
                assert_equal(pos, 10, err_msg=err_msg)

    def test_file_position_after_tofile(self):
        # gh-4118
        sizes = [io.DEFAULT_BUFFER_SIZE//8,
                 io.DEFAULT_BUFFER_SIZE,
                 io.DEFAULT_BUFFER_SIZE*8]

        for size in sizes:
            err_msg = "%d" % (size,)

            f = open(self.filename, 'wb')
            f.seek(size-1)
            f.write(b'\0')
            f.seek(10)
            f.write(b'12')
            np.array([0], dtype=np.float64).tofile(f)
            pos = f.tell()
            f.close()
            assert_equal(pos, 10 + 2 + 8, err_msg=err_msg)

            f = open(self.filename, 'r+b')
            f.read(2)
            f.seek(0, 1)  # seek between read&write required by ANSI C
            np.array([0], dtype=np.float64).tofile(f)
            pos = f.tell()
            f.close()
            assert_equal(pos, 10, err_msg=err_msg)

    def _check_from(self, s, value, **kw):
        y = np.fromstring(asbytes(s), **kw)
        assert_array_equal(y, value)

        f = open(self.filename, 'wb')
        f.write(asbytes(s))
        f.close()
        y = np.fromfile(self.filename, **kw)
        assert_array_equal(y, value)

    def test_nan(self):
        self._check_from(
            "nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)",
            [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            sep=' ')

    def test_inf(self):
        self._check_from(
            "inf +inf -inf infinity -Infinity iNfInItY -inF",
            [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf],
            sep=' ')

    def test_numbers(self):
        self._check_from("1.234 -1.234 .3 .3e55 -123133.1231e+133",
                         [1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ')

    def test_binary(self):
        self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@',
                         np.array([1, 2, 3, 4]),
                         dtype='<f4')

    @dec.slow  # takes > 1 minute on mechanical hard drive
    def test_big_binary(self):
        """Test workarounds for 32-bit limited fwrite, fseek, and ftell
        calls in windows. These normally would hang doing something like this.
        See http://projects.scipy.org/numpy/ticket/1660"""
        if sys.platform != 'win32':
            return
        try:
            # before workarounds, only up to 2**32-1 worked
            fourgbplus = 2**32 + 2**16
            testbytes = np.arange(8, dtype=np.int8)
            n = len(testbytes)
            flike = tempfile.NamedTemporaryFile()
            f = flike.file
            np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f)
            flike.seek(0)
            a = np.fromfile(f, dtype=np.int8)
            flike.close()
            assert_(len(a) == fourgbplus)
            # check only start and end for speed:
            assert_((a[:n] == testbytes).all())
            assert_((a[-n:] == testbytes).all())
        except (MemoryError, ValueError):
            pass

    def test_string(self):
        self._check_from('1,2,3,4', [1., 2., 3., 4.], sep=',')

    def test_counted_string(self):
        self._check_from('1,2,3,4', [1., 2., 3., 4.], count=4, sep=',')
        self._check_from('1,2,3,4', [1., 2., 3.], count=3, sep=',')
        self._check_from('1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',')

    def test_string_with_ws(self):
        self._check_from('1 2  3     4   ', [1, 2, 3, 4], dtype=int, sep=' ')

    def test_counted_string_with_ws(self):
        self._check_from('1 2  3     4   ', [1, 2, 3], count=3, dtype=int,
                         sep=' ')

    def test_ascii(self):
        self._check_from('1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',')
        self._check_from('1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',')

    def test_malformed(self):
        self._check_from('1.234 1,234', [1.234, 1.], sep=' ')

    def test_long_sep(self):
        self._check_from('1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_')

    def test_dtype(self):
        v = np.array([1, 2, 3, 4], dtype=np.int_)
        self._check_from('1,2,3,4', v, sep=',', dtype=np.int_)

    def test_dtype_bool(self):
        # can't use _check_from because fromstring can't handle True/False
        v = np.array([True, False, True, False], dtype=np.bool_)
        s = '1,0,-2.3,0'
        f = open(self.filename, 'wb')
        f.write(asbytes(s))
        f.close()
        y = np.fromfile(self.filename, sep=',', dtype=np.bool_)
        assert_(y.dtype == '?')
        assert_array_equal(y, v)

    def test_tofile_sep(self):
        x = np.array([1.51, 2, 3.51, 4], dtype=float)
        f = open(self.filename, 'w')
        x.tofile(f, sep=',')
        f.close()
        f = open(self.filename, 'r')
        s = f.read()
        f.close()
        #assert_equal(s, '1.51,2.0,3.51,4.0')
        y = np.array([float(p) for p in s.split(',')])
        assert_array_equal(x,y)

    def test_tofile_format(self):
        x = np.array([1.51, 2, 3.51, 4], dtype=float)
        f = open(self.filename, 'w')
        x.tofile(f, sep=',', format='%.2f')
        f.close()
        f = open(self.filename, 'r')
        s = f.read()
        f.close()
        assert_equal(s, '1.51,2.00,3.51,4.00')

    def test_locale(self):
        in_foreign_locale(self.test_numbers)()
        in_foreign_locale(self.test_nan)()
        in_foreign_locale(self.test_inf)()
        in_foreign_locale(self.test_counted_string)()
        in_foreign_locale(self.test_ascii)()
        in_foreign_locale(self.test_malformed)()
        in_foreign_locale(self.test_tofile_sep)()
        in_foreign_locale(self.test_tofile_format)()


class TestFromBuffer(object):
    def tst_basic(self, buffer, expected, kwargs):
        assert_array_equal(np.frombuffer(buffer,**kwargs), expected)

    def test_ip_basic(self):
        for byteorder in ['<', '>']:
            for dtype in [float, int, np.complex]:
                dt = np.dtype(dtype).newbyteorder(byteorder)
                x = (np.random.random((4, 7))*5).astype(dt)
                buf = x.tobytes()
                yield self.tst_basic, buf, x.flat, {'dtype':dt}

    def test_empty(self):
        yield self.tst_basic, asbytes(''), np.array([]), {}


class TestFlat(TestCase):
    def setUp(self):
        a0 = np.arange(20.0)
        a = a0.reshape(4, 5)
        a0.shape = (4, 5)
        a.flags.writeable = False
        self.a = a
        self.b = a[::2, ::2]
        self.a0 = a0
        self.b0 = a0[::2, ::2]

    def test_contiguous(self):
        testpassed = False
        try:
            self.a.flat[12] = 100.0
        except ValueError:
            testpassed = True
        assert_(testpassed)
        assert_(self.a.flat[12] == 12.0)

    def test_discontiguous(self):
        testpassed = False
        try:
            self.b.flat[4] = 100.0
        except ValueError:
            testpassed = True
        assert_(testpassed)
        assert_(self.b.flat[4] == 12.0)

    def test___array__(self):
        c = self.a.flat.__array__()
        d = self.b.flat.__array__()
        e = self.a0.flat.__array__()
        f = self.b0.flat.__array__()

        assert_(c.flags.writeable is False)
        assert_(d.flags.writeable is False)
        assert_(e.flags.writeable is True)
        assert_(f.flags.writeable is True)

        assert_(c.flags.updateifcopy is False)
        assert_(d.flags.updateifcopy is False)
        assert_(e.flags.updateifcopy is False)
        assert_(f.flags.updateifcopy is True)
        assert_(f.base is self.b0)


class TestResize(TestCase):
    def test_basic(self):
        x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        x.resize((5, 5))
        assert_array_equal(x.flat[:9],
                np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat)
        assert_array_equal(x[9:].flat, 0)

    def test_check_reference(self):
        x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        y = x
        self.assertRaises(ValueError, x.resize, (5, 1))
        del y  # avoid pyflakes unused variable warning.

    def test_int_shape(self):
        x = np.eye(3)
        x.resize(3)
        assert_array_equal(x, np.eye(3)[0,:])

    def test_none_shape(self):
        x = np.eye(3)
        x.resize(None)
        assert_array_equal(x, np.eye(3))
        x.resize()
        assert_array_equal(x, np.eye(3))

    def test_invalid_arguements(self):
        self.assertRaises(TypeError, np.eye(3).resize, 'hi')
        self.assertRaises(ValueError, np.eye(3).resize, -1)
        self.assertRaises(TypeError, np.eye(3).resize, order=1)
        self.assertRaises(TypeError, np.eye(3).resize, refcheck='hi')

    def test_freeform_shape(self):
        x = np.eye(3)
        x.resize(3, 2, 1)
        assert_(x.shape == (3, 2, 1))

    def test_zeros_appended(self):
        x = np.eye(3)
        x.resize(2, 3, 3)
        assert_array_equal(x[0], np.eye(3))
        assert_array_equal(x[1], np.zeros((3, 3)))

    def test_obj_obj(self):
        # check memory is initialized on resize, gh-4857
        a = np.ones(10, dtype=[('k', object, 2)])
        a.resize(15,)
        assert_equal(a.shape, (15,))
        assert_array_equal(a['k'][-5:], 0)
        assert_array_equal(a['k'][:-5], 1)


class TestRecord(TestCase):
    def test_field_rename(self):
        dt = np.dtype([('f', float), ('i', int)])
        dt.names = ['p', 'q']
        assert_equal(dt.names, ['p', 'q'])

    def test_multiple_field_name_occurrence(self):
        def test_assign():
            dtype = np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")])

        # Error raised when multiple fields have the same name
        assert_raises(ValueError, test_assign)

    if sys.version_info[0] >= 3:
        def test_bytes_fields(self):
            # Bytes are not allowed in field names and not recognized in titles
            # on Py3
            assert_raises(TypeError, np.dtype, [(asbytes('a'), int)])
            assert_raises(TypeError, np.dtype, [(('b', asbytes('a')), int)])

            dt = np.dtype([((asbytes('a'), 'b'), int)])
            assert_raises(ValueError, dt.__getitem__, asbytes('a'))

            x = np.array([(1,), (2,), (3,)], dtype=dt)
            assert_raises(IndexError, x.__getitem__, asbytes('a'))

            y = x[0]
            assert_raises(IndexError, y.__getitem__, asbytes('a'))

        def test_multiple_field_name_unicode(self):
            def test_assign_unicode():
                dt = np.dtype([("\u20B9", "f8"),
                               ("B", "f8"),
                               ("\u20B9", "f8")])

            # Error raised when multiple fields have the same name(unicode included)
            assert_raises(ValueError, test_assign_unicode)

    else:
        def test_unicode_field_titles(self):
            # Unicode field titles are added to field dict on Py2
            title = unicode('b')
            dt = np.dtype([((title, 'a'), int)])
            dt[title]
            dt['a']
            x = np.array([(1,), (2,), (3,)], dtype=dt)
            x[title]
            x['a']
            y = x[0]
            y[title]
            y['a']

        def test_unicode_field_names(self):
            # Unicode field names are not allowed on Py2
            title = unicode('b')
            assert_raises(TypeError, np.dtype, [(title, int)])
            assert_raises(TypeError, np.dtype, [(('a', title), int)])

    def test_field_names(self):
        # Test unicode and 8-bit / byte strings can be used
        a = np.zeros((1,), dtype=[('f1', 'i4'),
                                  ('f2', 'i4'),
                                  ('f3', [('sf1', 'i4')])])
        is_py3 = sys.version_info[0] >= 3
        if is_py3:
            funcs = (str,)
            # byte string indexing fails gracefully
            assert_raises(IndexError, a.__setitem__, asbytes('f1'), 1)
            assert_raises(IndexError, a.__getitem__, asbytes('f1'))
            assert_raises(IndexError, a['f1'].__setitem__, asbytes('sf1'), 1)
            assert_raises(IndexError, a['f1'].__getitem__, asbytes('sf1'))
        else:
            funcs = (str, unicode)
        for func in funcs:
            b = a.copy()
            fn1 = func('f1')
            b[fn1] = 1
            assert_equal(b[fn1], 1)
            fnn = func('not at all')
            assert_raises(ValueError, b.__setitem__, fnn, 1)
            assert_raises(ValueError, b.__getitem__, fnn)
            b[0][fn1] = 2
            assert_equal(b[fn1], 2)
            # Subfield
            assert_raises(ValueError, b[0].__setitem__, fnn, 1)
            assert_raises(ValueError, b[0].__getitem__, fnn)
            # Subfield
            fn3 = func('f3')
            sfn1 = func('sf1')
            b[fn3][sfn1] = 1
            assert_equal(b[fn3][sfn1], 1)
            assert_raises(ValueError, b[fn3].__setitem__, fnn, 1)
            assert_raises(ValueError, b[fn3].__getitem__, fnn)
            # multiple subfields
            fn2 = func('f2')
            b[fn2] = 3
            assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3))
            assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2))
            assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,)))
            # view of subfield view/copy
            assert_equal(b[['f1', 'f2']][0].view(('i4', 2)).tolist(), (2, 3))
            assert_equal(b[['f2', 'f1']][0].view(('i4', 2)).tolist(), (3, 2))
            view_dtype = [('f1', 'i4'), ('f3', [('', 'i4')])]
            assert_equal(b[['f1', 'f3']][0].view(view_dtype).tolist(), (2, (1,)))
        # non-ascii unicode field indexing is well behaved
        if not is_py3:
            raise SkipTest('non ascii unicode field indexing skipped; '
                           'raises segfault on python 2.x')
        else:
            assert_raises(ValueError, a.__setitem__, sixu('\u03e0'), 1)
            assert_raises(ValueError, a.__getitem__, sixu('\u03e0'))

    def test_field_names_deprecation(self):

        def collect_warnings(f, *args, **kwargs):
            with warnings.catch_warnings(record=True) as log:
                warnings.simplefilter("always")
                f(*args, **kwargs)
            return [w.category for w in log]

        a = np.zeros((1,), dtype=[('f1', 'i4'),
                                  ('f2', 'i4'),
                                  ('f3', [('sf1', 'i4')])])
        a['f1'][0] = 1
        a['f2'][0] = 2
        a['f3'][0] = (3,)
        b = np.zeros((1,), dtype=[('f1', 'i4'),
                                  ('f2', 'i4'),
                                  ('f3', [('sf1', 'i4')])])
        b['f1'][0] = 1
        b['f2'][0] = 2
        b['f3'][0] = (3,)

        # All the different functions raise a warning, but not an error, and
        # 'a' is not modified:
        assert_equal(collect_warnings(a[['f1', 'f2']].__setitem__, 0, (10, 20)),
                     [FutureWarning])
        assert_equal(a, b)
        # Views also warn
        subset = a[['f1', 'f2']]
        subset_view = subset.view()
        assert_equal(collect_warnings(subset_view['f1'].__setitem__, 0, 10),
                     [FutureWarning])
        # But the write goes through:
        assert_equal(subset['f1'][0], 10)
        # Only one warning per multiple field indexing, though (even if there
        # are multiple views involved):
        assert_equal(collect_warnings(subset['f1'].__setitem__, 0, 10), [])

    def test_record_hash(self):
        a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
        a.flags.writeable = False
        b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')])
        b.flags.writeable = False
        c = np.array([(1, 2), (3, 4)], dtype='i1,i2')
        c.flags.writeable = False
        self.assertTrue(hash(a[0]) == hash(a[1]))
        self.assertTrue(hash(a[0]) == hash(b[0]))
        self.assertTrue(hash(a[0]) != hash(b[1]))
        self.assertTrue(hash(c[0]) == hash(a[0]) and c[0] == a[0])

    def test_record_no_hash(self):
        a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
        self.assertRaises(TypeError, hash, a[0])

    def test_empty_structure_creation(self):
        # make sure these do not raise errors (gh-5631)
        np.array([()], dtype={'names': [], 'formats': [],
                           'offsets': [], 'itemsize': 12})
        np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [],
                                           'offsets': [], 'itemsize': 12})

class TestView(TestCase):
    def test_basic(self):
        x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)],
                     dtype=[('r', np.int8), ('g', np.int8),
                            ('b', np.int8), ('a', np.int8)])
        # We must be specific about the endianness here:
        y = x.view(dtype='<i4')
        # ... and again without the keyword.
        z = x.view('<i4')
        assert_array_equal(y, z)
        assert_array_equal(y, [67305985, 134678021])


def _mean(a, **args):
    return a.mean(**args)


def _var(a, **args):
    return a.var(**args)


def _std(a, **args):
    return a.std(**args)


class TestStats(TestCase):

    funcs = [_mean, _var, _std]

    def setUp(self):
        np.random.seed(range(3))
        self.rmat = np.random.random((4, 5))
        self.cmat = self.rmat + 1j * self.rmat
        self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat])
        self.omat = self.omat.reshape(4, 5)

    def test_keepdims(self):
        mat = np.eye(3)
        for f in self.funcs:
            for axis in [0, 1]:
                res = f(mat, axis=axis, keepdims=True)
                assert_(res.ndim == mat.ndim)
                assert_(res.shape[axis] == 1)
            for axis in [None]:
                res = f(mat, axis=axis, keepdims=True)
                assert_(res.shape == (1, 1))

    def test_out(self):
        mat = np.eye(3)
        for f in self.funcs:
            out = np.zeros(3)
            tgt = f(mat, axis=1)
            res = f(mat, axis=1, out=out)
            assert_almost_equal(res, out)
            assert_almost_equal(res, tgt)
        out = np.empty(2)
        assert_raises(ValueError, f, mat, axis=1, out=out)
        out = np.empty((2, 2))
        assert_raises(ValueError, f, mat, axis=1, out=out)

    def test_dtype_from_input(self):

        icodes = np.typecodes['AllInteger']
        fcodes = np.typecodes['AllFloat']

        # object type
        for f in self.funcs:
            mat = np.array([[Decimal(1)]*3]*3)
            tgt = mat.dtype.type
            res = f(mat, axis=1).dtype.type
            assert_(res is tgt)
            # scalar case
            res = type(f(mat, axis=None))
            assert_(res is Decimal)

        # integer types
        for f in self.funcs:
            for c in icodes:
                mat = np.eye(3, dtype=c)
                tgt = np.float64
                res = f(mat, axis=1).dtype.type
                assert_(res is tgt)
                # scalar case
                res = f(mat, axis=None).dtype.type
                assert_(res is tgt)

        # mean for float types
        for f in [_mean]:
            for c in fcodes:
                mat = np.eye(3, dtype=c)
                tgt = mat.dtype.type
                res = f(mat, axis=1).dtype.type
                assert_(res is tgt)
                # scalar case
                res = f(mat, axis=None).dtype.type
                assert_(res is tgt)

        # var, std for float types
        for f in [_var, _std]:
            for c in fcodes:
                mat = np.eye(3, dtype=c)
                # deal with complex types
                tgt = mat.real.dtype.type
                res = f(mat, axis=1).dtype.type
                assert_(res is tgt)
                # scalar case
                res = f(mat, axis=None).dtype.type
                assert_(res is tgt)

    def test_dtype_from_dtype(self):
        mat = np.eye(3)

        # stats for integer types
        # FIXME:
        # this needs definition as there are lots places along the line
        # where type casting may take place.

        # for f in self.funcs:
        #    for c in np.typecodes['AllInteger']:
        #        tgt = np.dtype(c).type
        #        res = f(mat, axis=1, dtype=c).dtype.type
        #        assert_(res is tgt)
        #        # scalar case
        #        res = f(mat, axis=None, dtype=c).dtype.type
        #        assert_(res is tgt)

        # stats for float types
        for f in self.funcs:
            for c in np.typecodes['AllFloat']:
                tgt = np.dtype(c).type
                res = f(mat, axis=1, dtype=c).dtype.type
                assert_(res is tgt)
                # scalar case
                res = f(mat, axis=None, dtype=c).dtype.type
                assert_(res is tgt)

    def test_ddof(self):
        for f in [_var]:
            for ddof in range(3):
                dim = self.rmat.shape[1]
                tgt = f(self.rmat, axis=1) * dim
                res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof)
        for f in [_std]:
            for ddof in range(3):
                dim = self.rmat.shape[1]
                tgt = f(self.rmat, axis=1) * np.sqrt(dim)
                res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof)
                assert_almost_equal(res, tgt)
                assert_almost_equal(res, tgt)

    def test_ddof_too_big(self):
        dim = self.rmat.shape[1]
        for f in [_var, _std]:
            for ddof in range(dim, dim + 2):
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    res = f(self.rmat, axis=1, ddof=ddof)
                    assert_(not (res < 0).any())
                    assert_(len(w) > 0)
                    assert_(issubclass(w[0].category, RuntimeWarning))

    def test_empty(self):
        A = np.zeros((0, 3))
        for f in self.funcs:
            for axis in [0, None]:
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    assert_(np.isnan(f(A, axis=axis)).all())
                    assert_(len(w) > 0)
                    assert_(issubclass(w[0].category, RuntimeWarning))
            for axis in [1]:
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    assert_equal(f(A, axis=axis), np.zeros([]))

    def test_mean_values(self):
        for mat in [self.rmat, self.cmat, self.omat]:
            for axis in [0, 1]:
                tgt = mat.sum(axis=axis)
                res = _mean(mat, axis=axis) * mat.shape[axis]
                assert_almost_equal(res, tgt)
            for axis in [None]:
                tgt = mat.sum(axis=axis)
                res = _mean(mat, axis=axis) * np.prod(mat.shape)
                assert_almost_equal(res, tgt)

    def test_var_values(self):
        for mat in [self.rmat, self.cmat, self.omat]:
            for axis in [0, 1, None]:
                msqr = _mean(mat * mat.conj(), axis=axis)
                mean = _mean(mat, axis=axis)
                tgt = msqr - mean * mean.conjugate()
                res = _var(mat, axis=axis)
                assert_almost_equal(res, tgt)

    def test_std_values(self):
        for mat in [self.rmat, self.cmat, self.omat]:
            for axis in [0, 1, None]:
                tgt = np.sqrt(_var(mat, axis=axis))
                res = _std(mat, axis=axis)
                assert_almost_equal(res, tgt)

    def test_subclass(self):
        class TestArray(np.ndarray):
            def __new__(cls, data, info):
                result = np.array(data)
                result = result.view(cls)
                result.info = info
                return result

            def __array_finalize__(self, obj):
                self.info = getattr(obj, "info", '')

        dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
        res = dat.mean(1)
        assert_(res.info == dat.info)
        res = dat.std(1)
        assert_(res.info == dat.info)
        res = dat.var(1)
        assert_(res.info == dat.info)

class TestVdot(TestCase):
    def test_basic(self):
        dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger']
        dt_complex = np.typecodes['Complex']

        # test real
        a = np.eye(3)
        for dt in dt_numeric + 'O':
            b = a.astype(dt)
            res = np.vdot(b, b)
            assert_(np.isscalar(res))
            assert_equal(np.vdot(b, b), 3)

        # test complex
        a = np.eye(3) * 1j
        for dt in dt_complex + 'O':
            b = a.astype(dt)
            res = np.vdot(b, b)
            assert_(np.isscalar(res))
            assert_equal(np.vdot(b, b), 3)

        # test boolean
        b = np.eye(3, dtype=np.bool)
        res = np.vdot(b, b)
        assert_(np.isscalar(res))
        assert_equal(np.vdot(b, b), True)

    def test_vdot_array_order(self):
        a = np.array([[1, 2], [3, 4]], order='C')
        b = np.array([[1, 2], [3, 4]], order='F')
        res = np.vdot(a, a)

        # integer arrays are exact
        assert_equal(np.vdot(a, b), res)
        assert_equal(np.vdot(b, a), res)
        assert_equal(np.vdot(b, b), res)

    def test_vdot_uncontiguous(self):
        for size in [2, 1000]:
            # Different sizes match different branches in vdot.
            a = np.zeros((size, 2, 2))
            b = np.zeros((size, 2, 2))
            a[:, 0, 0] = np.arange(size)
            b[:, 0, 0] = np.arange(size) + 1
            # Make a and b uncontiguous:
            a = a[..., 0]
            b = b[..., 0]

            assert_equal(np.vdot(a, b),
                         np.vdot(a.flatten(), b.flatten()))
            assert_equal(np.vdot(a, b.copy()),
                         np.vdot(a.flatten(), b.flatten()))
            assert_equal(np.vdot(a.copy(), b),
                         np.vdot(a.flatten(), b.flatten()))
            assert_equal(np.vdot(a.copy('F'), b),
                         np.vdot(a.flatten(), b.flatten()))
            assert_equal(np.vdot(a, b.copy('F')),
                         np.vdot(a.flatten(), b.flatten()))


class TestDot(TestCase):
    def setUp(self):
        np.random.seed(128)
        self.A = np.random.rand(4, 2)
        self.b1 = np.random.rand(2, 1)
        self.b2 = np.random.rand(2)
        self.b3 = np.random.rand(1, 2)
        self.b4 = np.random.rand(4)
        self.N = 7

    def test_dotmatmat(self):
        A = self.A
        res = np.dot(A.transpose(), A)
        tgt = np.array([[1.45046013, 0.86323640],
                        [0.86323640, 0.84934569]])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotmatvec(self):
        A, b1 = self.A, self.b1
        res = np.dot(A, b1)
        tgt = np.array([[0.32114320], [0.04889721],
                        [0.15696029], [0.33612621]])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotmatvec2(self):
        A, b2 = self.A, self.b2
        res = np.dot(A, b2)
        tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotvecmat(self):
        A, b4 = self.A, self.b4
        res = np.dot(b4, A)
        tgt = np.array([1.23495091, 1.12222648])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotvecmat2(self):
        b3, A = self.b3, self.A
        res = np.dot(b3, A.transpose())
        tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotvecmat3(self):
        A, b4 = self.A, self.b4
        res = np.dot(A.transpose(), b4)
        tgt = np.array([1.23495091, 1.12222648])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotvecvecouter(self):
        b1, b3 = self.b1, self.b3
        res = np.dot(b1, b3)
        tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotvecvecinner(self):
        b1, b3 = self.b1, self.b3
        res = np.dot(b3, b1)
        tgt = np.array([[ 0.23129668]])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotcolumnvect1(self):
        b1 = np.ones((3, 1))
        b2 = [5.3]
        res = np.dot(b1, b2)
        tgt = np.array([5.3, 5.3, 5.3])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotcolumnvect2(self):
        b1 = np.ones((3, 1)).transpose()
        b2 = [6.2]
        res = np.dot(b2, b1)
        tgt = np.array([6.2, 6.2, 6.2])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotvecscalar(self):
        np.random.seed(100)
        b1 = np.random.rand(1, 1)
        b2 = np.random.rand(1, 4)
        res = np.dot(b1, b2)
        tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_dotvecscalar2(self):
        np.random.seed(100)
        b1 = np.random.rand(4, 1)
        b2 = np.random.rand(1, 1)
        res = np.dot(b1, b2)
        tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]])
        assert_almost_equal(res, tgt, decimal=self.N)

    def test_all(self):
        dims = [(), (1,), (1, 1)]
        dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)]
        for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)):
            b1 = np.zeros(dim1)
            b2 = np.zeros(dim2)
            res = np.dot(b1, b2)
            tgt = np.zeros(dim)
            assert_(res.shape == tgt.shape)
            assert_almost_equal(res, tgt, decimal=self.N)

    def test_vecobject(self):
        class Vec(object):
            def __init__(self, sequence=None):
                if sequence is None:
                    sequence = []
                self.array = np.array(sequence)

            def __add__(self, other):
                out = Vec()
                out.array = self.array + other.array
                return out

            def __sub__(self, other):
                out = Vec()
                out.array = self.array - other.array
                return out

            def __mul__(self, other):  # with scalar
                out = Vec(self.array.copy())
                out.array *= other
                return out

            def __rmul__(self, other):
                return self*other

        U_non_cont = np.transpose([[1., 1.], [1., 2.]])
        U_cont = np.ascontiguousarray(U_non_cont)
        x = np.array([Vec([1., 0.]), Vec([0., 1.])])
        zeros = np.array([Vec([0., 0.]), Vec([0., 0.])])
        zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x)
        assert_equal(zeros[0].array, zeros_test[0].array)
        assert_equal(zeros[1].array, zeros_test[1].array)

    def test_dot_2args(self):
        from numpy.core.multiarray import dot

        a = np.array([[1, 2], [3, 4]], dtype=float)
        b = np.array([[1, 0], [1, 1]], dtype=float)
        c = np.array([[3, 2], [7, 4]], dtype=float)

        d = dot(a, b)
        assert_allclose(c, d)

    def test_dot_3args(self):
        from numpy.core.multiarray import dot

        np.random.seed(22)
        f = np.random.random_sample((1024, 16))
        v = np.random.random_sample((16, 32))

        r = np.empty((1024, 32))
        for i in range(12):
            dot(f, v, r)
        assert_equal(sys.getrefcount(r), 2)
        r2 = dot(f, v, out=None)
        assert_array_equal(r2, r)
        assert_(r is dot(f, v, out=r))

        v = v[:, 0].copy()  # v.shape == (16,)
        r = r[:, 0].copy()  # r.shape == (1024,)
        r2 = dot(f, v)
        assert_(r is dot(f, v, r))
        assert_array_equal(r2, r)

    def test_dot_3args_errors(self):
        from numpy.core.multiarray import dot

        np.random.seed(22)
        f = np.random.random_sample((1024, 16))
        v = np.random.random_sample((16, 32))

        r = np.empty((1024, 31))
        assert_raises(ValueError, dot, f, v, r)

        r = np.empty((1024,))
        assert_raises(ValueError, dot, f, v, r)

        r = np.empty((32,))
        assert_raises(ValueError, dot, f, v, r)

        r = np.empty((32, 1024))
        assert_raises(ValueError, dot, f, v, r)
        assert_raises(ValueError, dot, f, v, r.T)

        r = np.empty((1024, 64))
        assert_raises(ValueError, dot, f, v, r[:, ::2])
        assert_raises(ValueError, dot, f, v, r[:, :32])

        r = np.empty((1024, 32), dtype=np.float32)
        assert_raises(ValueError, dot, f, v, r)

        r = np.empty((1024, 32), dtype=int)
        assert_raises(ValueError, dot, f, v, r)

    def test_dot_array_order(self):
        a = np.array([[1, 2], [3, 4]], order='C')
        b = np.array([[1, 2], [3, 4]], order='F')
        res = np.dot(a, a)

        # integer arrays are exact
        assert_equal(np.dot(a, b), res)
        assert_equal(np.dot(b, a), res)
        assert_equal(np.dot(b, b), res)

    def test_dot_scalar_and_matrix_of_objects(self):
        # Ticket #2469
        arr = np.matrix([1, 2], dtype=object)
        desired = np.matrix([[3, 6]], dtype=object)
        assert_equal(np.dot(arr, 3), desired)
        assert_equal(np.dot(3, arr), desired)

    def test_accelerate_framework_sgemv_fix(self):

        def aligned_array(shape, align, dtype, order='C'):
            d = dtype(0)
            N = np.prod(shape)
            tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8)
            address = tmp.__array_interface__["data"][0]
            for offset in range(align):
                if (address + offset) % align == 0:
                    break
            tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype)
            return tmp.reshape(shape, order=order)

        def as_aligned(arr, align, dtype, order='C'):
            aligned = aligned_array(arr.shape, align, dtype, order)
            aligned[:] = arr[:]
            return aligned

        def assert_dot_close(A, X, desired):
            assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7)

        m = aligned_array(100, 15, np.float32)
        s = aligned_array((100, 100), 15, np.float32)
        np.dot(s, m)  # this will always segfault if the bug is present

        testdata = itertools.product((15,32), (10000,), (200,89), ('C','F'))
        for align, m, n, a_order in testdata:
            # Calculation in double precision
            A_d = np.random.rand(m, n)
            X_d = np.random.rand(n)
            desired = np.dot(A_d, X_d)
            # Calculation with aligned single precision
            A_f = as_aligned(A_d, align, np.float32, order=a_order)
            X_f = as_aligned(X_d, align, np.float32)
            assert_dot_close(A_f, X_f, desired)
            # Strided A rows
            A_d_2 = A_d[::2]
            desired = np.dot(A_d_2, X_d)
            A_f_2 = A_f[::2]
            assert_dot_close(A_f_2, X_f, desired)
            # Strided A columns, strided X vector
            A_d_22 = A_d_2[:, ::2]
            X_d_2 = X_d[::2]
            desired = np.dot(A_d_22, X_d_2)
            A_f_22 = A_f_2[:, ::2]
            X_f_2 = X_f[::2]
            assert_dot_close(A_f_22, X_f_2, desired)
            # Check the strides are as expected
            if a_order == 'F':
                assert_equal(A_f_22.strides, (8, 8 * m))
            else:
                assert_equal(A_f_22.strides, (8 * n, 8))
            assert_equal(X_f_2.strides, (8,))
            # Strides in A rows + cols only
            X_f_2c = as_aligned(X_f_2, align, np.float32)
            assert_dot_close(A_f_22, X_f_2c, desired)
            # Strides just in A cols
            A_d_12 = A_d[:, ::2]
            desired = np.dot(A_d_12, X_d_2)
            A_f_12 = A_f[:, ::2]
            assert_dot_close(A_f_12, X_f_2c, desired)
            # Strides in A cols and X
            assert_dot_close(A_f_12, X_f_2, desired)


class MatmulCommon():
    """Common tests for '@' operator and numpy.matmul.

    Do not derive from TestCase to avoid nose running it.

    """
    # Should work with these types. Will want to add
    # "O" at some point
    types = "?bhilqBHILQefdgFDG"

    def test_exceptions(self):
        dims = [
            ((1,), (2,)),            # mismatched vector vector
            ((2, 1,), (2,)),         # mismatched matrix vector
            ((2,), (1, 2)),          # mismatched vector matrix
            ((1, 2), (3, 1)),        # mismatched matrix matrix
            ((1,), ()),              # vector scalar
            ((), (1)),               # scalar vector
            ((1, 1), ()),            # matrix scalar
            ((), (1, 1)),            # scalar matrix
            ((2, 2, 1), (3, 1, 2)),  # cannot broadcast
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            assert_raises(ValueError, self.matmul, a, b)

    def test_shapes(self):
        dims = [
            ((1, 1), (2, 1, 1)),     # broadcast first argument
            ((2, 1, 1), (1, 1)),     # broadcast second argument
            ((2, 1, 1), (2, 1, 1)),  # matrix stack sizes match
            ]

        for dt, (dm1, dm2) in itertools.product(self.types, dims):
            a = np.ones(dm1, dtype=dt)
            b = np.ones(dm2, dtype=dt)
            res = self.matmul(a, b)
            assert_(res.shape == (2, 1, 1))

        # vector vector returns scalars.
        for dt in self.types:
            a = np.ones((2,), dtype=dt)
            b = np.ones((2,), dtype=dt)
            c = self.matmul(a, b)
            assert_(np.array(c).shape == ())

    def test_result_types(self):
        mat = np.ones((1,1))
        vec = np.ones((1,))
        for dt in self.types:
            m = mat.astype(dt)
            v = vec.astype(dt)
            for arg in [(m, v), (v, m), (m, m)]:
                res = self.matmul(*arg)
                assert_(res.dtype == dt)

            # vector vector returns scalars
            res = self.matmul(v, v)
            assert_(type(res) is np.dtype(dt).type)

    def test_vector_vector_values(self):
        vec = np.array([1, 2])
        tgt = 5
        for dt in self.types[1:]:
            v1 = vec.astype(dt)
            res = self.matmul(v1, v1)
            assert_equal(res, tgt)

        # boolean type
        vec = np.array([True, True], dtype='?')
        res = self.matmul(vec, vec)
        assert_equal(res, True)

    def test_vector_matrix_values(self):
        vec = np.array([1, 2])
        mat1 = np.array([[1, 2], [3, 4]])
        mat2 = np.stack([mat1]*2, axis=0)
        tgt1 = np.array([7, 10])
        tgt2 = np.stack([tgt1]*2, axis=0)
        for dt in self.types[1:]:
            v = vec.astype(dt)
            m1 = mat1.astype(dt)
            m2 = mat2.astype(dt)
            res = self.matmul(v, m1)
            assert_equal(res, tgt1)
            res = self.matmul(v, m2)
            assert_equal(res, tgt2)

        # boolean type
        vec = np.array([True, False])
        mat1 = np.array([[True, False], [False, True]])
        mat2 = np.stack([mat1]*2, axis=0)
        tgt1 = np.array([True, False])
        tgt2 = np.stack([tgt1]*2, axis=0)

        res = self.matmul(vec, mat1)
        assert_equal(res, tgt1)
        res = self.matmul(vec, mat2)
        assert_equal(res, tgt2)

    def test_matrix_vector_values(self):
        vec = np.array([1, 2])
        mat1 = np.array([[1, 2], [3, 4]])
        mat2 = np.stack([mat1]*2, axis=0)
        tgt1 = np.array([5, 11])
        tgt2 = np.stack([tgt1]*2, axis=0)
        for dt in self.types[1:]:
            v = vec.astype(dt)
            m1 = mat1.astype(dt)
            m2 = mat2.astype(dt)
            res = self.matmul(m1, v)
            assert_equal(res, tgt1)
            res = self.matmul(m2, v)
            assert_equal(res, tgt2)

        # boolean type
        vec = np.array([True, False])
        mat1 = np.array([[True, False], [False, True]])
        mat2 = np.stack([mat1]*2, axis=0)
        tgt1 = np.array([True, False])
        tgt2 = np.stack([tgt1]*2, axis=0)

        res = self.matmul(vec, mat1)
        assert_equal(res, tgt1)
        res = self.matmul(vec, mat2)
        assert_equal(res, tgt2)

    def test_matrix_matrix_values(self):
        mat1 = np.array([[1, 2], [3, 4]])
        mat2 = np.array([[1, 0], [1, 1]])
        mat12 = np.stack([mat1, mat2], axis=0)
        mat21 = np.stack([mat2, mat1], axis=0)
        tgt11 = np.array([[7, 10], [15, 22]])
        tgt12 = np.array([[3, 2], [7, 4]])
        tgt21 = np.array([[1, 2], [4, 6]])
        tgt12_21 = np.stack([tgt12, tgt21], axis=0)
        tgt11_12 = np.stack((tgt11, tgt12), axis=0)
        tgt11_21 = np.stack((tgt11, tgt21), axis=0)
        for dt in self.types[1:]:
            m1 = mat1.astype(dt)
            m2 = mat2.astype(dt)
            m12 = mat12.astype(dt)
            m21 = mat21.astype(dt)

            # matrix @ matrix
            res = self.matmul(m1, m2)
            assert_equal(res, tgt12)
            res = self.matmul(m2, m1)
            assert_equal(res, tgt21)

            # stacked @ matrix
            res = self.matmul(m12, m1)
            assert_equal(res, tgt11_21)

            # matrix @ stacked
            res = self.matmul(m1, m12)
            assert_equal(res, tgt11_12)

            # stacked @ stacked
            res = self.matmul(m12, m21)
            assert_equal(res, tgt12_21)

        # boolean type
        m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_)
        m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_)
        m12 = np.stack([m1, m2], axis=0)
        m21 = np.stack([m2, m1], axis=0)
        tgt11 = m1
        tgt12 = m1
        tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_)
        tgt12_21 = np.stack([tgt12, tgt21], axis=0)
        tgt11_12 = np.stack((tgt11, tgt12), axis=0)
        tgt11_21 = np.stack((tgt11, tgt21), axis=0)

        # matrix @ matrix
        res = self.matmul(m1, m2)
        assert_equal(res, tgt12)
        res = self.matmul(m2, m1)
        assert_equal(res, tgt21)

        # stacked @ matrix
        res = self.matmul(m12, m1)
        assert_equal(res, tgt11_21)

        # matrix @ stacked
        res = self.matmul(m1, m12)
        assert_equal(res, tgt11_12)

        # stacked @ stacked
        res = self.matmul(m12, m21)
        assert_equal(res, tgt12_21)

    def test_numpy_ufunc_override(self):
        # 2016-01-29: NUMPY_UFUNC_DISABLED
        return

        class A(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return "A"

        class B(np.ndarray):
            def __new__(cls, *args, **kwargs):
                return np.array(*args, **kwargs).view(cls)

            def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
                return NotImplemented

        a = A([1, 2])
        b = B([1, 2])
        c = np.ones(2)
        assert_equal(self.matmul(a, b), "A")
        assert_equal(self.matmul(b, a), "A")
        assert_raises(TypeError, self.matmul, b, c)


class TestMatmul(MatmulCommon, TestCase):
    matmul = np.matmul

    def test_out_arg(self):
        a = np.ones((2, 2), dtype=np.float)
        b = np.ones((2, 2), dtype=np.float)
        tgt = np.full((2,2), 2, dtype=np.float)

        # test as positional argument
        msg = "out positional argument"
        out = np.zeros((2, 2), dtype=np.float)
        self.matmul(a, b, out)
        assert_array_equal(out, tgt, err_msg=msg)

        # test as keyword argument
        msg = "out keyword argument"
        out = np.zeros((2, 2), dtype=np.float)
        self.matmul(a, b, out=out)
        assert_array_equal(out, tgt, err_msg=msg)

        # test out with not allowed type cast (safe casting)
        # einsum and cblas raise different error types, so
        # use Exception.
        msg = "out argument with illegal cast"
        out = np.zeros((2, 2), dtype=np.int32)
        assert_raises(Exception, self.matmul, a, b, out=out)

        # skip following tests for now, cblas does not allow non-contiguous
        # outputs and consistency with dot would require same type,
        # dimensions, subtype, and c_contiguous.

        # test out with allowed type cast
        # msg = "out argument with allowed cast"
        # out = np.zeros((2, 2), dtype=np.complex128)
        # self.matmul(a, b, out=out)
        # assert_array_equal(out, tgt, err_msg=msg)

        # test out non-contiguous
        # msg = "out argument with non-contiguous layout"
        # c = np.zeros((2, 2, 2), dtype=np.float)
        # self.matmul(a, b, out=c[..., 0])
        # assert_array_equal(c, tgt, err_msg=msg)


if sys.version_info[:2] >= (3, 5):
    class TestMatmulOperator(MatmulCommon, TestCase):
        import operator
        matmul = operator.matmul

        def test_array_priority_override(self):

            class A(object):
                __array_priority__ = 1000

                def __matmul__(self, other):
                    return "A"

                def __rmatmul__(self, other):
                    return "A"

            a = A()
            b = np.ones(2)
            assert_equal(self.matmul(a, b), "A")
            assert_equal(self.matmul(b, a), "A")

    def test_matmul_inplace():
        # It would be nice to support in-place matmul eventually, but for now
        # we don't have a working implementation, so better just to error out
        # and nudge people to writing "a = a @ b".
        a = np.eye(3)
        b = np.eye(3)
        assert_raises(TypeError, a.__imatmul__, b)
        import operator
        assert_raises(TypeError, operator.imatmul, a, b)
        # we avoid writing the token `exec` so as not to crash python 2's
        # parser
        exec_ = getattr(builtins, "exec")
        assert_raises(TypeError, exec_, "a @= b", globals(), locals())


class TestInner(TestCase):

    def test_inner_type_mismatch(self):
        c = 1.
        A = np.array((1,1), dtype='i,i')

        assert_raises(TypeError, np.inner, c, A)
        assert_raises(TypeError, np.inner, A, c)

    def test_inner_scalar_and_vector(self):
        for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
            sca = np.array(3, dtype=dt)[()]
            vec = np.array([1, 2], dtype=dt)
            desired = np.array([3, 6], dtype=dt)
            assert_equal(np.inner(vec, sca), desired)
            assert_equal(np.inner(sca, vec), desired)

    def test_inner_scalar_and_matrix(self):
        for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
            sca = np.array(3, dtype=dt)[()]
            arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
            desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
            assert_equal(np.inner(arr, sca), desired)
            assert_equal(np.inner(sca, arr), desired)

    def test_inner_scalar_and_matrix_of_objects(self):
        # Ticket #4482
        arr = np.matrix([1, 2], dtype=object)
        desired = np.matrix([[3, 6]], dtype=object)
        assert_equal(np.inner(arr, 3), desired)
        assert_equal(np.inner(3, arr), desired)

    def test_vecself(self):
        # Ticket 844.
        # Inner product of a vector with itself segfaults or give
        # meaningless result
        a = np.zeros(shape=(1, 80), dtype=np.float64)
        p = np.inner(a, a)
        assert_almost_equal(p, 0, decimal=14)

    def test_inner_product_with_various_contiguities(self):
        # github issue 6532
        for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
            # check an inner product involving a matrix transpose
            A = np.array([[1, 2], [3, 4]], dtype=dt)
            B = np.array([[1, 3], [2, 4]], dtype=dt)
            C = np.array([1, 1], dtype=dt)
            desired = np.array([4, 6], dtype=dt)
            assert_equal(np.inner(A.T, C), desired)
            assert_equal(np.inner(C, A.T), desired)
            assert_equal(np.inner(B, C), desired)
            assert_equal(np.inner(C, B), desired)
            # check a matrix product
            desired = np.array([[7, 10], [15, 22]], dtype=dt)
            assert_equal(np.inner(A, B), desired)
            # check the syrk vs. gemm paths
            desired = np.array([[5, 11], [11, 25]], dtype=dt)
            assert_equal(np.inner(A, A), desired)
            assert_equal(np.inner(A, A.copy()), desired)
            # check an inner product involving an aliased and reversed view
            a = np.arange(5).astype(dt)
            b = a[::-1]
            desired = np.array(10, dtype=dt).item()
            assert_equal(np.inner(b, a), desired)

    def test_3d_tensor(self):
        for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
            a = np.arange(24).reshape(2,3,4).astype(dt)
            b = np.arange(24, 48).reshape(2,3,4).astype(dt)
            desired = np.array(
                [[[[ 158,  182,  206],
                   [ 230,  254,  278]],

                  [[ 566,  654,  742],
                   [ 830,  918, 1006]],

                  [[ 974, 1126, 1278],
                   [1430, 1582, 1734]]],

                 [[[1382, 1598, 1814],
                   [2030, 2246, 2462]],

                  [[1790, 2070, 2350],
                   [2630, 2910, 3190]],

                  [[2198, 2542, 2886],
                   [3230, 3574, 3918]]]],
                dtype=dt
            )
            assert_equal(np.inner(a, b), desired)
            assert_equal(np.inner(b, a).transpose(2,3,0,1), desired)


class TestSummarization(TestCase):
    def test_1d(self):
        A = np.arange(1001)
        strA = '[   0    1    2 ...,  998  999 1000]'
        assert_(str(A) == strA)

        reprA = 'array([   0,    1,    2, ...,  998,  999, 1000])'
        assert_(repr(A) == reprA)

    def test_2d(self):
        A = np.arange(1002).reshape(2, 501)
        strA = '[[   0    1    2 ...,  498  499  500]\n' \
               ' [ 501  502  503 ...,  999 1000 1001]]'
        assert_(str(A) == strA)

        reprA = 'array([[   0,    1,    2, ...,  498,  499,  500],\n' \
                '       [ 501,  502,  503, ...,  999, 1000, 1001]])'
        assert_(repr(A) == reprA)


class TestAlen(TestCase):
    def test_basic(self):
        m = np.array([1, 2, 3])
        self.assertEqual(np.alen(m), 3)

        m = np.array([[1, 2, 3], [4, 5, 7]])
        self.assertEqual(np.alen(m), 2)

        m = [1, 2, 3]
        self.assertEqual(np.alen(m), 3)

        m = [[1, 2, 3], [4, 5, 7]]
        self.assertEqual(np.alen(m), 2)

    def test_singleton(self):
        self.assertEqual(np.alen(5), 1)


class TestChoose(TestCase):
    def setUp(self):
        self.x = 2*np.ones((3,), dtype=int)
        self.y = 3*np.ones((3,), dtype=int)
        self.x2 = 2*np.ones((2, 3), dtype=int)
        self.y2 = 3*np.ones((2, 3), dtype=int)
        self.ind = [0, 0, 1]

    def test_basic(self):
        A = np.choose(self.ind, (self.x, self.y))
        assert_equal(A, [2, 2, 3])

    def test_broadcast1(self):
        A = np.choose(self.ind, (self.x2, self.y2))
        assert_equal(A, [[2, 2, 3], [2, 2, 3]])

    def test_broadcast2(self):
        A = np.choose(self.ind, (self.x, self.y2))
        assert_equal(A, [[2, 2, 3], [2, 2, 3]])


class TestRepeat(TestCase):
    def setUp(self):
        self.m = np.array([1, 2, 3, 4, 5, 6])
        self.m_rect = self.m.reshape((2, 3))

    def test_basic(self):
        A = np.repeat(self.m, [1, 3, 2, 1, 1, 2])
        assert_equal(A, [1, 2, 2, 2, 3,
                         3, 4, 5, 6, 6])

    def test_broadcast1(self):
        A = np.repeat(self.m, 2)
        assert_equal(A, [1, 1, 2, 2, 3, 3,
                         4, 4, 5, 5, 6, 6])

    def test_axis_spec(self):
        A = np.repeat(self.m_rect, [2, 1], axis=0)
        assert_equal(A, [[1, 2, 3],
                         [1, 2, 3],
                         [4, 5, 6]])

        A = np.repeat(self.m_rect, [1, 3, 2], axis=1)
        assert_equal(A, [[1, 2, 2, 2, 3, 3],
                         [4, 5, 5, 5, 6, 6]])

    def test_broadcast2(self):
        A = np.repeat(self.m_rect, 2, axis=0)
        assert_equal(A, [[1, 2, 3],
                         [1, 2, 3],
                         [4, 5, 6],
                         [4, 5, 6]])

        A = np.repeat(self.m_rect, 2, axis=1)
        assert_equal(A, [[1, 1, 2, 2, 3, 3],
                         [4, 4, 5, 5, 6, 6]])


# TODO: test for multidimensional
NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4}


class TestNeighborhoodIter(TestCase):
    # Simple, 2d tests
    def _test_simple2d(self, dt):
        # Test zero and one padding for simple data type
        x = np.array([[0, 1], [2, 3]], dtype=dt)
        r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt),
             np.array([[0, 0, 0], [0, 1, 0]], dtype=dt),
             np.array([[0, 0, 1], [0, 2, 3]], dtype=dt),
             np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)]
        l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0],
                NEIGH_MODE['zero'])
        assert_array_equal(l, r)

        r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt),
             np.array([[1, 1, 1], [0, 1, 1]], dtype=dt),
             np.array([[1, 0, 1], [1, 2, 3]], dtype=dt),
             np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)]
        l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0],
                NEIGH_MODE['one'])
        assert_array_equal(l, r)

        r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt),
             np.array([[4, 4, 4], [0, 1, 4]], dtype=dt),
             np.array([[4, 0, 1], [4, 2, 3]], dtype=dt),
             np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)]
        l = test_neighborhood_iterator(x, [-1, 0, -1, 1], 4,
                NEIGH_MODE['constant'])
        assert_array_equal(l, r)

    def test_simple2d(self):
        self._test_simple2d(np.float)

    def test_simple2d_object(self):
        self._test_simple2d(Decimal)

    def _test_mirror2d(self, dt):
        x = np.array([[0, 1], [2, 3]], dtype=dt)
        r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt),
             np.array([[0, 1, 1], [0, 1, 1]], dtype=dt),
             np.array([[0, 0, 1], [2, 2, 3]], dtype=dt),
             np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)]
        l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0],
                NEIGH_MODE['mirror'])
        assert_array_equal(l, r)

    def test_mirror2d(self):
        self._test_mirror2d(np.float)

    def test_mirror2d_object(self):
        self._test_mirror2d(Decimal)

    # Simple, 1d tests
    def _test_simple(self, dt):
        # Test padding with constant values
        x = np.linspace(1, 5, 5).astype(dt)
        r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]]
        l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['zero'])
        assert_array_equal(l, r)

        r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]]
        l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['one'])
        assert_array_equal(l, r)

        r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]]
        l = test_neighborhood_iterator(x, [-1, 1], x[4], NEIGH_MODE['constant'])
        assert_array_equal(l, r)

    def test_simple_float(self):
        self._test_simple(np.float)

    def test_simple_object(self):
        self._test_simple(Decimal)

    # Test mirror modes
    def _test_mirror(self, dt):
        x = np.linspace(1, 5, 5).astype(dt)
        r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5],
                [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt)
        l = test_neighborhood_iterator(x, [-2, 2], x[1], NEIGH_MODE['mirror'])
        self.assertTrue([i.dtype == dt for i in l])
        assert_array_equal(l, r)

    def test_mirror(self):
        self._test_mirror(np.float)

    def test_mirror_object(self):
        self._test_mirror(Decimal)

    # Circular mode
    def _test_circular(self, dt):
        x = np.linspace(1, 5, 5).astype(dt)
        r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5],
                [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt)
        l = test_neighborhood_iterator(x, [-2, 2], x[0], NEIGH_MODE['circular'])
        assert_array_equal(l, r)

    def test_circular(self):
        self._test_circular(np.float)

    def test_circular_object(self):
        self._test_circular(Decimal)

# Test stacking neighborhood iterators
class TestStackedNeighborhoodIter(TestCase):
    # Simple, 1d test: stacking 2 constant-padded neigh iterators
    def test_simple_const(self):
        dt = np.float64
        # Test zero and one padding for simple data type
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([0], dtype=dt),
             np.array([0], dtype=dt),
             np.array([1], dtype=dt),
             np.array([2], dtype=dt),
             np.array([3], dtype=dt),
             np.array([0], dtype=dt),
             np.array([0], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-2, 4], NEIGH_MODE['zero'],
                [0, 0], NEIGH_MODE['zero'])
        assert_array_equal(l, r)

        r = [np.array([1, 0, 1], dtype=dt),
             np.array([0, 1, 2], dtype=dt),
             np.array([1, 2, 3], dtype=dt),
             np.array([2, 3, 0], dtype=dt),
             np.array([3, 0, 1], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
                [-1, 1], NEIGH_MODE['one'])
        assert_array_equal(l, r)

    # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
    # mirror padding
    def test_simple_mirror(self):
        dt = np.float64
        # Stacking zero on top of mirror
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([0, 1, 1], dtype=dt),
             np.array([1, 1, 2], dtype=dt),
             np.array([1, 2, 3], dtype=dt),
             np.array([2, 3, 3], dtype=dt),
             np.array([3, 3, 0], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['mirror'],
                [-1, 1], NEIGH_MODE['zero'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([1, 0, 0], dtype=dt),
             np.array([0, 0, 1], dtype=dt),
             np.array([0, 1, 2], dtype=dt),
             np.array([1, 2, 3], dtype=dt),
             np.array([2, 3, 0], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
                [-2, 0], NEIGH_MODE['mirror'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero: 2nd
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([0, 1, 2], dtype=dt),
             np.array([1, 2, 3], dtype=dt),
             np.array([2, 3, 0], dtype=dt),
             np.array([3, 0, 0], dtype=dt),
             np.array([0, 0, 3], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
                [0, 2], NEIGH_MODE['mirror'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero: 3rd
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([1, 0, 0, 1, 2], dtype=dt),
             np.array([0, 0, 1, 2, 3], dtype=dt),
             np.array([0, 1, 2, 3, 0], dtype=dt),
             np.array([1, 2, 3, 0, 0], dtype=dt),
             np.array([2, 3, 0, 0, 3], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
                [-2, 2], NEIGH_MODE['mirror'])
        assert_array_equal(l, r)

    # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
    # circular padding
    def test_simple_circular(self):
        dt = np.float64
        # Stacking zero on top of mirror
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([0, 3, 1], dtype=dt),
             np.array([3, 1, 2], dtype=dt),
             np.array([1, 2, 3], dtype=dt),
             np.array([2, 3, 1], dtype=dt),
             np.array([3, 1, 0], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['circular'],
                [-1, 1], NEIGH_MODE['zero'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([3, 0, 0], dtype=dt),
             np.array([0, 0, 1], dtype=dt),
             np.array([0, 1, 2], dtype=dt),
             np.array([1, 2, 3], dtype=dt),
             np.array([2, 3, 0], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
                [-2, 0], NEIGH_MODE['circular'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero: 2nd
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([0, 1, 2], dtype=dt),
             np.array([1, 2, 3], dtype=dt),
             np.array([2, 3, 0], dtype=dt),
             np.array([3, 0, 0], dtype=dt),
             np.array([0, 0, 1], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
                [0, 2], NEIGH_MODE['circular'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero: 3rd
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([3, 0, 0, 1, 2], dtype=dt),
             np.array([0, 0, 1, 2, 3], dtype=dt),
             np.array([0, 1, 2, 3, 0], dtype=dt),
             np.array([1, 2, 3, 0, 0], dtype=dt),
             np.array([2, 3, 0, 0, 1], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'],
                [-2, 2], NEIGH_MODE['circular'])
        assert_array_equal(l, r)

    # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator
    # being strictly within the array
    def test_simple_strict_within(self):
        dt = np.float64
        # Stacking zero on top of zero, first neighborhood strictly inside the
        # array
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([1, 2, 3, 0], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'],
                [-1, 2], NEIGH_MODE['zero'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero, first neighborhood strictly inside the
        # array
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([1, 2, 3, 3], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'],
                [-1, 2], NEIGH_MODE['mirror'])
        assert_array_equal(l, r)

        # Stacking mirror on top of zero, first neighborhood strictly inside the
        # array
        x = np.array([1, 2, 3], dtype=dt)
        r = [np.array([1, 2, 3, 1], dtype=dt)]
        l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'],
                [-1, 2], NEIGH_MODE['circular'])
        assert_array_equal(l, r)

class TestWarnings(object):

    def test_complex_warning(self):
        x = np.array([1, 2])
        y = np.array([1-2j, 1+2j])

        with warnings.catch_warnings():
            warnings.simplefilter("error", np.ComplexWarning)
            assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y)
            assert_equal(x, [1, 2])


class TestMinScalarType(object):

    def test_usigned_shortshort(self):
        dt = np.min_scalar_type(2**8-1)
        wanted = np.dtype('uint8')
        assert_equal(wanted, dt)

    def test_usigned_short(self):
        dt = np.min_scalar_type(2**16-1)
        wanted = np.dtype('uint16')
        assert_equal(wanted, dt)

    def test_usigned_int(self):
        dt = np.min_scalar_type(2**32-1)
        wanted = np.dtype('uint32')
        assert_equal(wanted, dt)

    def test_usigned_longlong(self):
        dt = np.min_scalar_type(2**63-1)
        wanted = np.dtype('uint64')
        assert_equal(wanted, dt)

    def test_object(self):
        dt = np.min_scalar_type(2**64)
        wanted = np.dtype('O')
        assert_equal(wanted, dt)


if sys.version_info[:2] == (2, 6):
    from numpy.core.multiarray import memorysimpleview as memoryview

from numpy.core._internal import _dtype_from_pep3118


class TestPEP3118Dtype(object):
    def _check(self, spec, wanted):
        dt = np.dtype(wanted)
        if isinstance(wanted, list) and isinstance(wanted[-1], tuple):
            if wanted[-1][0] == '':
                names = list(dt.names)
                names[-1] = ''
                dt.names = tuple(names)
        assert_equal(_dtype_from_pep3118(spec), dt,
                     err_msg="spec %r != dtype %r" % (spec, wanted))

    def test_native_padding(self):
        align = np.dtype('i').alignment
        for j in range(8):
            if j == 0:
                s = 'bi'
            else:
                s = 'b%dxi' % j
            self._check('@'+s, {'f0': ('i1', 0),
                                'f1': ('i', align*(1 + j//align))})
            self._check('='+s, {'f0': ('i1', 0),
                                'f1': ('i', 1+j)})

    def test_native_padding_2(self):
        # Native padding should work also for structs and sub-arrays
        self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)})
        self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)})

    def test_trailing_padding(self):
        # Trailing padding should be included, *and*, the item size
        # should match the alignment if in aligned mode
        align = np.dtype('i').alignment

        def VV(n):
            return 'V%d' % (align*(1 + (n-1)//align))

        self._check('ix', [('f0', 'i'), ('', VV(1))])
        self._check('ixx', [('f0', 'i'), ('', VV(2))])
        self._check('ixxx', [('f0', 'i'), ('', VV(3))])
        self._check('ixxxx', [('f0', 'i'), ('', VV(4))])
        self._check('i7x', [('f0', 'i'), ('', VV(7))])

        self._check('^ix', [('f0', 'i'), ('', 'V1')])
        self._check('^ixx', [('f0', 'i'), ('', 'V2')])
        self._check('^ixxx', [('f0', 'i'), ('', 'V3')])
        self._check('^ixxxx', [('f0', 'i'), ('', 'V4')])
        self._check('^i7x', [('f0', 'i'), ('', 'V7')])

    def test_native_padding_3(self):
        dt = np.dtype(
                [('a', 'b'), ('b', 'i'),
                    ('sub', np.dtype('b,i')), ('c', 'i')],
                align=True)
        self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt)

        dt = np.dtype(
                [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
                    ('e', 'b'), ('sub', np.dtype('b,i', align=True))])
        self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt)

    def test_padding_with_array_inside_struct(self):
        dt = np.dtype(
                [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)),
                    ('d', 'i')],
                align=True)
        self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt)

    def test_byteorder_inside_struct(self):
        # The byte order after @T{=i} should be '=', not '@'.
        # Check this by noting the absence of native alignment.
        self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0),
                                 'f1': ('i', 5)})

    def test_intra_padding(self):
        # Natively aligned sub-arrays may require some internal padding
        align = np.dtype('i').alignment

        def VV(n):
            return 'V%d' % (align*(1 + (n-1)//align))

        self._check('(3)T{ix}', ({'f0': ('i', 0), '': (VV(1), 4)}, (3,)))


class TestNewBufferProtocol(object):
    def _check_roundtrip(self, obj):
        obj = np.asarray(obj)
        x = memoryview(obj)
        y = np.asarray(x)
        y2 = np.array(x)
        assert_(not y.flags.owndata)
        assert_(y2.flags.owndata)

        assert_equal(y.dtype, obj.dtype)
        assert_equal(y.shape, obj.shape)
        assert_array_equal(obj, y)

        assert_equal(y2.dtype, obj.dtype)
        assert_equal(y2.shape, obj.shape)
        assert_array_equal(obj, y2)

    def test_roundtrip(self):
        x = np.array([1, 2, 3, 4, 5], dtype='i4')
        self._check_roundtrip(x)

        x = np.array([[1, 2], [3, 4]], dtype=np.float64)
        self._check_roundtrip(x)

        x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
        self._check_roundtrip(x)

        dt = [('a', 'b'),
              ('b', 'h'),
              ('c', 'i'),
              ('d', 'l'),
              ('dx', 'q'),
              ('e', 'B'),
              ('f', 'H'),
              ('g', 'I'),
              ('h', 'L'),
              ('hx', 'Q'),
              ('i', np.single),
              ('j', np.double),
              ('k', np.longdouble),
              ('ix', np.csingle),
              ('jx', np.cdouble),
              ('kx', np.clongdouble),
              ('l', 'S4'),
              ('m', 'U4'),
              ('n', 'V3'),
              ('o', '?'),
              ('p', np.half),
              ]
        x = np.array(
                [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                    asbytes('aaaa'), 'bbbb', asbytes('xxx'), True, 1.0)],
                dtype=dt)
        self._check_roundtrip(x)

        x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))])
        self._check_roundtrip(x)

        x = np.array([1, 2, 3], dtype='>i2')
        self._check_roundtrip(x)

        x = np.array([1, 2, 3], dtype='<i2')
        self._check_roundtrip(x)

        x = np.array([1, 2, 3], dtype='>i4')
        self._check_roundtrip(x)

        x = np.array([1, 2, 3], dtype='<i4')
        self._check_roundtrip(x)

        # check long long can be represented as non-native
        x = np.array([1, 2, 3], dtype='>q')
        self._check_roundtrip(x)

        # Native-only data types can be passed through the buffer interface
        # only in native byte order
        if sys.byteorder == 'little':
            x = np.array([1, 2, 3], dtype='>g')
            assert_raises(ValueError, self._check_roundtrip, x)
            x = np.array([1, 2, 3], dtype='<g')
            self._check_roundtrip(x)
        else:
            x = np.array([1, 2, 3], dtype='>g')
            self._check_roundtrip(x)
            x = np.array([1, 2, 3], dtype='<g')
            assert_raises(ValueError, self._check_roundtrip, x)

    def test_roundtrip_half(self):
        half_list = [
            1.0,
            -2.0,
            6.5504 * 10**4,  # (max half precision)
            2**-14,  # ~= 6.10352 * 10**-5 (minimum positive normal)
            2**-24,  # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal)
            0.0,
            -0.0,
            float('+inf'),
            float('-inf'),
            0.333251953125,  # ~= 1/3
        ]

        x = np.array(half_list, dtype='>e')
        self._check_roundtrip(x)
        x = np.array(half_list, dtype='<e')
        self._check_roundtrip(x)

    def test_roundtrip_single_types(self):
        for typ in np.typeDict.values():
            dtype = np.dtype(typ)

            if dtype.char in 'Mm':
                # datetimes cannot be used in buffers
                continue
            if dtype.char == 'V':
                # skip void
                continue

            x = np.zeros(4, dtype=dtype)
            self._check_roundtrip(x)

            if dtype.char not in 'qQgG':
                dt = dtype.newbyteorder('<')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

                dt = dtype.newbyteorder('>')
                x = np.zeros(4, dtype=dt)
                self._check_roundtrip(x)

    def test_roundtrip_scalar(self):
        # Issue #4015.
        self._check_roundtrip(0)

    def test_export_simple_1d(self):
        x = np.array([1, 2, 3, 4, 5], dtype='i')
        y = memoryview(x)
        assert_equal(y.format, 'i')
        assert_equal(y.shape, (5,))
        assert_equal(y.ndim, 1)
        assert_equal(y.strides, (4,))
        assert_equal(y.suboffsets, EMPTY)
        assert_equal(y.itemsize, 4)

    def test_export_simple_nd(self):
        x = np.array([[1, 2], [3, 4]], dtype=np.float64)
        y = memoryview(x)
        assert_equal(y.format, 'd')
        assert_equal(y.shape, (2, 2))
        assert_equal(y.ndim, 2)
        assert_equal(y.strides, (16, 8))
        assert_equal(y.suboffsets, EMPTY)
        assert_equal(y.itemsize, 8)

    def test_export_discontiguous(self):
        x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
        y = memoryview(x)
        assert_equal(y.format, 'f')
        assert_equal(y.shape, (3, 3))
        assert_equal(y.ndim, 2)
        assert_equal(y.strides, (36, 4))
        assert_equal(y.suboffsets, EMPTY)
        assert_equal(y.itemsize, 4)

    def test_export_record(self):
        dt = [('a', 'b'),
              ('b', 'h'),
              ('c', 'i'),
              ('d', 'l'),
              ('dx', 'q'),
              ('e', 'B'),
              ('f', 'H'),
              ('g', 'I'),
              ('h', 'L'),
              ('hx', 'Q'),
              ('i', np.single),
              ('j', np.double),
              ('k', np.longdouble),
              ('ix', np.csingle),
              ('jx', np.cdouble),
              ('kx', np.clongdouble),
              ('l', 'S4'),
              ('m', 'U4'),
              ('n', 'V3'),
              ('o', '?'),
              ('p', np.half),
              ]
        x = np.array(
                [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                    asbytes('aaaa'), 'bbbb', asbytes('   '), True, 1.0)],
                dtype=dt)
        y = memoryview(x)
        assert_equal(y.shape, (1,))
        assert_equal(y.ndim, 1)
        assert_equal(y.suboffsets, EMPTY)

        sz = sum([np.dtype(b).itemsize for a, b in dt])
        if np.dtype('l').itemsize == 4:
            assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
        else:
            assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
        # Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides
        if not (np.ones(1).strides[0] == np.iinfo(np.intp).max):
            assert_equal(y.strides, (sz,))
        assert_equal(y.itemsize, sz)

    def test_export_subarray(self):
        x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))])
        y = memoryview(x)
        assert_equal(y.format, 'T{(2,2)i:a:}')
        assert_equal(y.shape, EMPTY)
        assert_equal(y.ndim, 0)
        assert_equal(y.strides, EMPTY)
        assert_equal(y.suboffsets, EMPTY)
        assert_equal(y.itemsize, 16)

    def test_export_endian(self):
        x = np.array([1, 2, 3], dtype='>i')
        y = memoryview(x)
        if sys.byteorder == 'little':
            assert_equal(y.format, '>i')
        else:
            assert_equal(y.format, 'i')

        x = np.array([1, 2, 3], dtype='<i')
        y = memoryview(x)
        if sys.byteorder == 'little':
            assert_equal(y.format, 'i')
        else:
            assert_equal(y.format, '<i')

    def test_export_flags(self):
        # Check SIMPLE flag, see also gh-3613 (exception should be BufferError)
        assert_raises(ValueError, get_buffer_info, np.arange(5)[::2], ('SIMPLE',))

    def test_padding(self):
        for j in range(8):
            x = np.array([(1,), (2,)], dtype={'f0': (int, j)})
            self._check_roundtrip(x)

    def test_reference_leak(self):
        count_1 = sys.getrefcount(np.core._internal)
        a = np.zeros(4)
        b = memoryview(a)
        c = np.asarray(b)
        count_2 = sys.getrefcount(np.core._internal)
        assert_equal(count_1, count_2)
        del c  # avoid pyflakes unused variable warning.

    def test_padded_struct_array(self):
        dt1 = np.dtype(
                [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')],
                align=True)
        x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1)
        self._check_roundtrip(x1)

        dt2 = np.dtype(
                [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')],
                align=True)
        x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2)
        self._check_roundtrip(x2)

        dt3 = np.dtype(
                [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
                    ('e', 'b'), ('sub', np.dtype('b,i', align=True))])
        x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3)
        self._check_roundtrip(x3)

    def test_relaxed_strides(self):
        # Test that relaxed strides are converted to non-relaxed
        c = np.ones((1, 10, 10), dtype='i8')

        # Check for NPY_RELAXED_STRIDES_CHECKING:
        if np.ones((10, 1), order="C").flags.f_contiguous:
            c.strides = (-1, 80, 8)

        assert_(memoryview(c).strides == (800, 80, 8))

        # Writing C-contiguous data to a BytesIO buffer should work
        fd = io.BytesIO()
        fd.write(c.data)

        fortran = c.T
        assert_(memoryview(fortran).strides == (8, 80, 800))

        arr = np.ones((1, 10))
        if arr.flags.f_contiguous:
            shape, strides = get_buffer_info(arr, ['F_CONTIGUOUS'])
            assert_(strides[0] == 8)
            arr = np.ones((10, 1), order='F')
            shape, strides = get_buffer_info(arr, ['C_CONTIGUOUS'])
            assert_(strides[-1] == 8)


class TestArrayAttributeDeletion(object):

    def test_multiarray_writable_attributes_deletion(self):
        """ticket #2046, should not seqfault, raise AttributeError"""
        a = np.ones(2)
        attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat']
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            for s in attr:
                assert_raises(AttributeError, delattr, a, s)

    def test_multiarray_not_writable_attributes_deletion(self):
        a = np.ones(2)
        attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base",
                "ctypes", "T", "__array_interface__", "__array_struct__",
                "__array_priority__", "__array_finalize__"]
        for s in attr:
            assert_raises(AttributeError, delattr, a, s)

    def test_multiarray_flags_writable_attribute_deletion(self):
        a = np.ones(2).flags
        attr = ['updateifcopy', 'aligned', 'writeable']
        for s in attr:
            assert_raises(AttributeError, delattr, a, s)

    def test_multiarray_flags_not_writable_attribute_deletion(self):
        a = np.ones(2).flags
        attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran",
                "owndata", "fnc", "forc", "behaved", "carray", "farray",
                "num"]
        for s in attr:
            assert_raises(AttributeError, delattr, a, s)


def test_array_interface():
    # Test scalar coercion within the array interface
    class Foo(object):
        def __init__(self, value):
            self.value = value
            self.iface = {'typestr': '=f8'}

        def __float__(self):
            return float(self.value)

        @property
        def __array_interface__(self):
            return self.iface

    f = Foo(0.5)
    assert_equal(np.array(f), 0.5)
    assert_equal(np.array([f]), [0.5])
    assert_equal(np.array([f, f]), [0.5, 0.5])
    assert_equal(np.array(f).dtype, np.dtype('=f8'))
    # Test various shape definitions
    f.iface['shape'] = ()
    assert_equal(np.array(f), 0.5)
    f.iface['shape'] = None
    assert_raises(TypeError, np.array, f)
    f.iface['shape'] = (1, 1)
    assert_equal(np.array(f), [[0.5]])
    f.iface['shape'] = (2,)
    assert_raises(ValueError, np.array, f)

    # test scalar with no shape
    class ArrayLike(object):
        array = np.array(1)
        __array_interface__ = array.__array_interface__
    assert_equal(np.array(ArrayLike()), 1)


def test_array_interface_itemsize():
    # See gh-6361
    my_dtype = np.dtype({'names': ['A', 'B'], 'formats': ['f4', 'f4'],
                         'offsets': [0, 8], 'itemsize': 16})
    a = np.ones(10, dtype=my_dtype)
    descr_t = np.dtype(a.__array_interface__['descr'])
    typestr_t = np.dtype(a.__array_interface__['typestr'])
    assert_equal(descr_t.itemsize, typestr_t.itemsize)


def test_flat_element_deletion():
    it = np.ones(3).flat
    try:
        del it[1]
        del it[1:2]
    except TypeError:
        pass
    except:
        raise AssertionError


def test_scalar_element_deletion():
    a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')])
    assert_raises(ValueError, a[0].__delitem__, 'x')


class TestMemEventHook(TestCase):
    def test_mem_seteventhook(self):
        # The actual tests are within the C code in
        # multiarray/multiarray_tests.c.src
        test_pydatamem_seteventhook_start()
        # force an allocation and free of a numpy array
        # needs to be larger then limit of small memory cacher in ctors.c
        a = np.zeros(1000)
        del a
        test_pydatamem_seteventhook_end()

class TestMapIter(TestCase):
    def test_mapiter(self):
        # The actual tests are within the C code in
        # multiarray/multiarray_tests.c.src

        a = np.arange(12).reshape((3, 4)).astype(float)
        index = ([1, 1, 2, 0],
                 [0, 0, 2, 3])
        vals = [50, 50, 30, 16]

        test_inplace_increment(a, index, vals)
        assert_equal(a, [[0.00, 1., 2.0, 19.],
                         [104., 5., 6.0, 7.0],
                         [8.00, 9., 40., 11.]])

        b = np.arange(6).astype(float)
        index = (np.array([1, 2, 0]),)
        vals = [50, 4, 100.1]
        test_inplace_increment(b, index, vals)
        assert_equal(b, [100.1,  51.,   6.,   3.,   4.,   5.])


class TestAsCArray(TestCase):
    def test_1darray(self):
        array = np.arange(24, dtype=np.double)
        from_c = test_as_c_array(array, 3)
        assert_equal(array[3], from_c)

    def test_2darray(self):
        array = np.arange(24, dtype=np.double).reshape(3, 8)
        from_c = test_as_c_array(array, 2, 4)
        assert_equal(array[2, 4], from_c)

    def test_3darray(self):
        array = np.arange(24, dtype=np.double).reshape(2, 3, 4)
        from_c = test_as_c_array(array, 1, 2, 3)
        assert_equal(array[1, 2, 3], from_c)


class TestConversion(TestCase):
    def test_array_scalar_relational_operation(self):
        # All integer
        for dt1 in np.typecodes['AllInteger']:
            assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,))
            assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,))

            for dt2 in np.typecodes['AllInteger']:
                assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))
                assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))

        # Unsigned integers
        for dt1 in 'BHILQP':
            assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,))
            assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,))
            assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,))

            # Unsigned vs signed
            for dt2 in 'bhilqp':
                assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))
                assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))
                assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))

        # Signed integers and floats
        for dt1 in 'bhlqp' + np.typecodes['Float']:
            assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
            assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
            assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,))

            for dt2 in 'bhlqp' + np.typecodes['Float']:
                assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))
                assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))
                assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2),
                        "type %s and %s failed" % (dt1, dt2))


class TestWhere(TestCase):
    def test_basic(self):
        dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128,
               np.longdouble, np.clongdouble]
        for dt in dts:
            c = np.ones(53, dtype=np.bool)
            assert_equal(np.where( c, dt(0), dt(1)), dt(0))
            assert_equal(np.where(~c, dt(0), dt(1)), dt(1))
            assert_equal(np.where(True, dt(0), dt(1)), dt(0))
            assert_equal(np.where(False, dt(0), dt(1)), dt(1))
            d = np.ones_like(c).astype(dt)
            e = np.zeros_like(d)
            r = d.astype(dt)
            c[7] = False
            r[7] = e[7]
            assert_equal(np.where(c, e, e), e)
            assert_equal(np.where(c, d, e), r)
            assert_equal(np.where(c, d, e[0]), r)
            assert_equal(np.where(c, d[0], e), r)
            assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2])
            assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2])
            assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3])
            assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3])
            assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2])
            assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3])
            assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3])

    def test_exotic(self):
        # object
        assert_array_equal(np.where(True, None, None), np.array(None))
        # zero sized
        m = np.array([], dtype=bool).reshape(0, 3)
        b = np.array([], dtype=np.float64).reshape(0, 3)
        assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3))

        # object cast
        d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313,
                      0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013,
                      1.267, 0.229, -1.39, 0.487])
        nan = float('NaN')
        e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan,
                     'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'],
                     dtype=object)
        m = np.array([0, 0, 1, 0, 1, 1, 0, 0, 1, 1,
                      0, 1, 1, 0, 1, 1, 0, 1, 0, 0], dtype=bool)

        r = e[:]
        r[np.where(m)] = d[np.where(m)]
        assert_array_equal(np.where(m, d, e), r)

        r = e[:]
        r[np.where(~m)] = d[np.where(~m)]
        assert_array_equal(np.where(m, e, d), r)

        assert_array_equal(np.where(m, e, e), e)

        # minimal dtype result with NaN scalar (e.g required by pandas)
        d = np.array([1., 2.], dtype=np.float32)
        e = float('NaN')
        assert_equal(np.where(True, d, e).dtype, np.float32)
        e = float('Infinity')
        assert_equal(np.where(True, d, e).dtype, np.float32)
        e = float('-Infinity')
        assert_equal(np.where(True, d, e).dtype, np.float32)
        # also check upcast
        e = float(1e150)
        assert_equal(np.where(True, d, e).dtype, np.float64)

    def test_ndim(self):
        c = [True, False]
        a = np.zeros((2, 25))
        b = np.ones((2, 25))
        r = np.where(np.array(c)[:,np.newaxis], a, b)
        assert_array_equal(r[0], a[0])
        assert_array_equal(r[1], b[0])

        a = a.T
        b = b.T
        r = np.where(c, a, b)
        assert_array_equal(r[:,0], a[:,0])
        assert_array_equal(r[:,1], b[:,0])

    def test_dtype_mix(self):
        c = np.array([False, True, False, False, False, False, True, False,
                     False, False, True, False])
        a = np.uint32(1)
        b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
                      dtype=np.float64)
        r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
                     dtype=np.float64)
        assert_equal(np.where(c, a, b), r)

        a = a.astype(np.float32)
        b = b.astype(np.int64)
        assert_equal(np.where(c, a, b), r)

        # non bool mask
        c = c.astype(np.int)
        c[c != 0] = 34242324
        assert_equal(np.where(c, a, b), r)
        # invert
        tmpmask = c != 0
        c[c == 0] = 41247212
        c[tmpmask] = 0
        assert_equal(np.where(c, b, a), r)

    def test_foreign(self):
        c = np.array([False, True, False, False, False, False, True, False,
                     False, False, True, False])
        r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
                     dtype=np.float64)
        a = np.ones(1, dtype='>i4')
        b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
                     dtype=np.float64)
        assert_equal(np.where(c, a, b), r)

        b = b.astype('>f8')
        assert_equal(np.where(c, a, b), r)

        a = a.astype('<i4')
        assert_equal(np.where(c, a, b), r)

        c = c.astype('>i4')
        assert_equal(np.where(c, a, b), r)

    def test_error(self):
        c = [True, True]
        a = np.ones((4, 5))
        b = np.ones((5, 5))
        assert_raises(ValueError, np.where, c, a, a)
        assert_raises(ValueError, np.where, c[0], a, b)

    def test_string(self):
        # gh-4778 check strings are properly filled with nulls
        a = np.array("abc")
        b = np.array("x" * 753)
        assert_equal(np.where(True, a, b), "abc")
        assert_equal(np.where(False, b, a), "abc")

        # check native datatype sized strings
        a = np.array("abcd")
        b = np.array("x" * 8)
        assert_equal(np.where(True, a, b), "abcd")
        assert_equal(np.where(False, b, a), "abcd")


class TestSizeOf(TestCase):

    def test_empty_array(self):
        x = np.array([])
        assert_(sys.getsizeof(x) > 0)

    def check_array(self, dtype):
        elem_size = dtype(0).itemsize

        for length in [10, 50, 100, 500]:
            x = np.arange(length, dtype=dtype)
            assert_(sys.getsizeof(x) > length * elem_size)

    def test_array_int32(self):
        self.check_array(np.int32)

    def test_array_int64(self):
        self.check_array(np.int64)

    def test_array_float32(self):
        self.check_array(np.float32)

    def test_array_float64(self):
        self.check_array(np.float64)

    def test_view(self):
        d = np.ones(100)
        assert_(sys.getsizeof(d[...]) < sys.getsizeof(d))

    def test_reshape(self):
        d = np.ones(100)
        assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy()))

    def test_resize(self):
        d = np.ones(100)
        old = sys.getsizeof(d)
        d.resize(50)
        assert_(old > sys.getsizeof(d))
        d.resize(150)
        assert_(old < sys.getsizeof(d))

    def test_error(self):
        d = np.ones(100)
        assert_raises(TypeError, d.__sizeof__, "a")


class TestHashing(TestCase):

    def test_arrays_not_hashable(self):
        x = np.ones(3)
        assert_raises(TypeError, hash, x)

    def test_collections_hashable(self):
        x = np.array([])
        self.assertFalse(isinstance(x, collections.Hashable))


class TestArrayPriority(TestCase):
    # This will go away when __array_priority__ is settled, meanwhile
    # it serves to check unintended changes.
    op = operator
    binary_ops = [
        op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod,
        op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt,
        op.ge, op.lt, op.le, op.ne, op.eq
        ]

    if sys.version_info[0] < 3:
        binary_ops.append(op.div)

    class Foo(np.ndarray):
        __array_priority__ = 100.

        def __new__(cls, *args, **kwargs):
            return np.array(*args, **kwargs).view(cls)

    class Bar(np.ndarray):
        __array_priority__ = 101.

        def __new__(cls, *args, **kwargs):
            return np.array(*args, **kwargs).view(cls)

    class Other(object):
        __array_priority__ = 1000.

        def _all(self, other):
            return self.__class__()

        __add__ = __radd__ = _all
        __sub__ = __rsub__ = _all
        __mul__ = __rmul__ = _all
        __pow__ = __rpow__ = _all
        __div__ = __rdiv__ = _all
        __mod__ = __rmod__ = _all
        __truediv__ = __rtruediv__ = _all
        __floordiv__ = __rfloordiv__ = _all
        __and__ = __rand__ = _all
        __xor__ = __rxor__ = _all
        __or__ = __ror__ = _all
        __lshift__ = __rlshift__ = _all
        __rshift__ = __rrshift__ = _all
        __eq__ = _all
        __ne__ = _all
        __gt__ = _all
        __ge__ = _all
        __lt__ = _all
        __le__ = _all

    def test_ndarray_subclass(self):
        a = np.array([1, 2])
        b = self.Bar([1, 2])
        for f in self.binary_ops:
            msg = repr(f)
            assert_(isinstance(f(a, b), self.Bar), msg)
            assert_(isinstance(f(b, a), self.Bar), msg)

    def test_ndarray_other(self):
        a = np.array([1, 2])
        b = self.Other()
        for f in self.binary_ops:
            msg = repr(f)
            assert_(isinstance(f(a, b), self.Other), msg)
            assert_(isinstance(f(b, a), self.Other), msg)

    def test_subclass_subclass(self):
        a = self.Foo([1, 2])
        b = self.Bar([1, 2])
        for f in self.binary_ops:
            msg = repr(f)
            assert_(isinstance(f(a, b), self.Bar), msg)
            assert_(isinstance(f(b, a), self.Bar), msg)

    def test_subclass_other(self):
        a = self.Foo([1, 2])
        b = self.Other()
        for f in self.binary_ops:
            msg = repr(f)
            assert_(isinstance(f(a, b), self.Other), msg)
            assert_(isinstance(f(b, a), self.Other), msg)


class TestBytestringArrayNonzero(TestCase):

    def test_empty_bstring_array_is_falsey(self):
        self.assertFalse(np.array([''], dtype=np.str))

    def test_whitespace_bstring_array_is_falsey(self):
        a = np.array(['spam'], dtype=np.str)
        a[0] = '  \0\0'
        self.assertFalse(a)

    def test_all_null_bstring_array_is_falsey(self):
        a = np.array(['spam'], dtype=np.str)
        a[0] = '\0\0\0\0'
        self.assertFalse(a)

    def test_null_inside_bstring_array_is_truthy(self):
        a = np.array(['spam'], dtype=np.str)
        a[0] = ' \0 \0'
        self.assertTrue(a)


class TestUnicodeArrayNonzero(TestCase):

    def test_empty_ustring_array_is_falsey(self):
        self.assertFalse(np.array([''], dtype=np.unicode))

    def test_whitespace_ustring_array_is_falsey(self):
        a = np.array(['eggs'], dtype=np.unicode)
        a[0] = '  \0\0'
        self.assertFalse(a)

    def test_all_null_ustring_array_is_falsey(self):
        a = np.array(['eggs'], dtype=np.unicode)
        a[0] = '\0\0\0\0'
        self.assertFalse(a)

    def test_null_inside_ustring_array_is_truthy(self):
        a = np.array(['eggs'], dtype=np.unicode)
        a[0] = ' \0 \0'
        self.assertTrue(a)


if __name__ == "__main__":
    run_module_suite()

Spamworldpro Mini