Server : Apache System : Linux indy02.toastserver.com 3.10.0-962.3.2.lve1.5.85.el7.x86_64 #1 SMP Thu Apr 18 15:18:36 UTC 2024 x86_64 User : palandch ( 1163) PHP Version : 7.1.33 Disable Function : NONE Directory : /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/tests/ |
from __future__ import division, absolute_import, print_function import sys import itertools import numpy as np from numpy.testing import run_module_suite, assert_, assert_raises, assert_equal from numpy.core.multiarray_tests import solve_diophantine, internal_overlap from numpy.lib.stride_tricks import as_strided from numpy.compat import long if sys.version_info[0] >= 3: xrange = range ndims = 2 size = 10 shape = tuple([size] * ndims) MAY_SHARE_BOUNDS = 0 MAY_SHARE_EXACT = -1 def _indices_for_nelems(nelems): """Returns slices of length nelems, from start onwards, in direction sign.""" if nelems == 0: return [size // 2] # int index res = [] for step in (1, 2): for sign in (-1, 1): start = size // 2 - nelems * step * sign // 2 stop = start + nelems * step * sign res.append(slice(start, stop, step * sign)) return res def _indices_for_axis(): """Returns (src, dst) pairs of indices.""" res = [] for nelems in (0, 2, 3): ind = _indices_for_nelems(nelems) # no itertools.product available in Py2.4 res.extend([(a, b) for a in ind for b in ind]) # all assignments of size "nelems" return res def _indices(ndims): """Returns ((axis0_src, axis0_dst), (axis1_src, axis1_dst), ... ) index pairs.""" ind = _indices_for_axis() # no itertools.product available in Py2.4 res = [[]] for i in range(ndims): newres = [] for elem in ind: for others in res: newres.append([elem] + others) res = newres return res def _check_assignment(srcidx, dstidx): """Check assignment arr[dstidx] = arr[srcidx] works.""" arr = np.arange(np.product(shape)).reshape(shape) cpy = arr.copy() cpy[dstidx] = arr[srcidx] arr[dstidx] = arr[srcidx] assert_(np.all(arr == cpy), 'assigning arr[%s] = arr[%s]' % (dstidx, srcidx)) def test_overlapping_assignments(): """Test automatically generated assignments which overlap in memory.""" inds = _indices(ndims) for ind in inds: srcidx = tuple([a[0] for a in ind]) dstidx = tuple([a[1] for a in ind]) yield _check_assignment, srcidx, dstidx def test_diophantine_fuzz(): # Fuzz test the diophantine solver rng = np.random.RandomState(1234) max_int = np.iinfo(np.intp).max for ndim in range(10): feasible_count = 0 infeasible_count = 0 min_count = 500//(ndim + 1) numbers = [] while min(feasible_count, infeasible_count) < min_count: # Ensure big and small integer problems A_max = 1 + rng.randint(0, 11, dtype=np.intp)**6 U_max = rng.randint(0, 11, dtype=np.intp)**6 A_max = min(max_int, A_max) U_max = min(max_int-1, U_max) A = tuple(int(rng.randint(1, A_max+1, dtype=np.intp)) for j in range(ndim)) U = tuple(int(rng.randint(0, U_max+2, dtype=np.intp)) for j in range(ndim)) b_ub = min(max_int-2, sum(a*ub for a, ub in zip(A, U))) b = rng.randint(-1, b_ub+2, dtype=np.intp) if ndim == 0 and feasible_count < min_count: b = 0 X = solve_diophantine(A, U, b) if X is None: # Check the simplified decision problem agrees X_simplified = solve_diophantine(A, U, b, simplify=1) assert_(X_simplified is None, (A, U, b, X_simplified)) # Check no solution exists (provided the problem is # small enough so that brute force checking doesn't # take too long) try: ranges = tuple(xrange(0, a*ub+1, a) for a, ub in zip(A, U)) except OverflowError: # xrange on 32-bit Python 2 may overflow continue size = 1 for r in ranges: size *= len(r) if size < 100000: assert_(not any(sum(w) == b for w in itertools.product(*ranges))) infeasible_count += 1 else: # Check the simplified decision problem agrees X_simplified = solve_diophantine(A, U, b, simplify=1) assert_(X_simplified is not None, (A, U, b, X_simplified)) # Check validity assert_(sum(a*x for a, x in zip(A, X)) == b) assert_(all(0 <= x <= ub for x, ub in zip(X, U))) feasible_count += 1 def test_diophantine_overflow(): # Smoke test integer overflow detection max_intp = np.iinfo(np.intp).max max_int64 = np.iinfo(np.int64).max if max_int64 <= max_intp: # Check that the algorithm works internally in 128-bit; # solving this problem requires large intermediate numbers A = (max_int64//2, max_int64//2 - 10) U = (max_int64//2, max_int64//2 - 10) b = 2*(max_int64//2) - 10 assert_equal(solve_diophantine(A, U, b), (1, 1)) def check_may_share_memory_exact(a, b): got = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT) assert_equal(np.may_share_memory(a, b), np.may_share_memory(a, b, max_work=MAY_SHARE_BOUNDS)) a.fill(0) b.fill(0) a.fill(1) exact = b.any() err_msg = "" if got != exact: err_msg = " " + "\n ".join([ "base_a - base_b = %r" % (a.__array_interface__['data'][0] - b.__array_interface__['data'][0],), "shape_a = %r" % (a.shape,), "shape_b = %r" % (b.shape,), "strides_a = %r" % (a.strides,), "strides_b = %r" % (b.strides,), "size_a = %r" % (a.size,), "size_b = %r" % (b.size,) ]) assert_equal(got, exact, err_msg=err_msg) def test_may_share_memory_manual(): # Manual test cases for may_share_memory # Base arrays xs0 = [ np.zeros([13, 21, 23, 22], dtype=np.int8), np.zeros([13, 21, 23*2, 22], dtype=np.int8)[:,:,::2,:] ] # Generate all negative stride combinations xs = [] for x in xs0: for ss in itertools.product(*(([slice(None), slice(None, None, -1)],)*4)): xp = x[ss] xs.append(xp) for x in xs: # The default is a simple extent check assert_(np.may_share_memory(x[:,0,:], x[:,1,:])) assert_(np.may_share_memory(x[:,0,:], x[:,1,:], max_work=None)) # Exact checks check_may_share_memory_exact(x[:,0,:], x[:,1,:]) check_may_share_memory_exact(x[:,::7], x[:,3::3]) try: xp = x.ravel() if xp.flags.owndata: continue xp = xp.view(np.int16) except ValueError: continue # 0-size arrays cannot overlap check_may_share_memory_exact(x.ravel()[6:6], xp.reshape(13, 21, 23, 11)[:,::7]) # Test itemsize is dealt with check_may_share_memory_exact(x[:,::7], xp.reshape(13, 21, 23, 11)) check_may_share_memory_exact(x[:,::7], xp.reshape(13, 21, 23, 11)[:,3::3]) check_may_share_memory_exact(x.ravel()[6:7], xp.reshape(13, 21, 23, 11)[:,::7]) # Check unit size x = np.zeros([1], dtype=np.int8) check_may_share_memory_exact(x, x) check_may_share_memory_exact(x, x.copy()) def check_may_share_memory_easy_fuzz(get_max_work, same_steps, min_count): # Check that overlap problems with common strides are solved with # little work. x = np.zeros([17,34,71,97], dtype=np.int16) rng = np.random.RandomState(1234) def random_slice(n, step): start = rng.randint(0, n+1, dtype=np.intp) stop = rng.randint(start, n+1, dtype=np.intp) if rng.randint(0, 2, dtype=np.intp) == 0: stop, start = start, stop step *= -1 return slice(start, stop, step) feasible = 0 infeasible = 0 while min(feasible, infeasible) < min_count: steps = tuple(rng.randint(1, 11, dtype=np.intp) if rng.randint(0, 5, dtype=np.intp) == 0 else 1 for j in range(x.ndim)) if same_steps: steps2 = steps else: steps2 = tuple(rng.randint(1, 11, dtype=np.intp) if rng.randint(0, 5, dtype=np.intp) == 0 else 1 for j in range(x.ndim)) t1 = np.arange(x.ndim) rng.shuffle(t1) t2 = np.arange(x.ndim) rng.shuffle(t2) s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps)) s2 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps2)) a = x[s1].transpose(t1) b = x[s2].transpose(t2) bounds_overlap = np.may_share_memory(a, b) may_share_answer = np.may_share_memory(a, b) easy_answer = np.may_share_memory(a, b, max_work=get_max_work(a, b)) exact_answer = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT) if easy_answer != exact_answer: # assert_equal is slow... assert_equal(easy_answer, exact_answer, err_msg=repr((s1, s2))) if may_share_answer != bounds_overlap: assert_equal(may_share_answer, bounds_overlap, err_msg=repr((s1, s2))) if bounds_overlap: if exact_answer: feasible += 1 else: infeasible += 1 def test_may_share_memory_easy_fuzz(): # Check that overlap problems with common strides are always # solved with little work. check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: 1, same_steps=True, min_count=2000) def test_may_share_memory_harder_fuzz(): # Overlap problems with not necessarily common strides take more # work. # # The work bound below can't be reduced much. Harder problems can # also exist but not be detected here, as the set of problems # comes from RNG. check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: max(a.size, b.size)//2, same_steps=False, min_count=2000) def test_shares_memory_api(): x = np.zeros([4, 5, 6], dtype=np.int8) assert_equal(np.shares_memory(x, x), True) assert_equal(np.shares_memory(x, x.copy()), False) a = x[:,::2,::3] b = x[:,::3,::2] assert_equal(np.shares_memory(a, b), True) assert_equal(np.shares_memory(a, b, max_work=None), True) assert_raises(np.TooHardError, np.shares_memory, a, b, max_work=1) assert_raises(np.TooHardError, np.shares_memory, a, b, max_work=long(1)) def test_internal_overlap_diophantine(): def check(A, U, exists=None): X = solve_diophantine(A, U, 0, require_ub_nontrivial=1) if exists is None: exists = (X is not None) if X is not None: assert_(sum(a*x for a, x in zip(A, X)) == sum(a*u//2 for a, u in zip(A, U))) assert_(all(0 <= x <= u for x, u in zip(X, U))) assert_(any(x != u//2 for x, u in zip(X, U))) if exists: assert_(X is not None, repr(X)) else: assert_(X is None, repr(X)) # Smoke tests check((3, 2), (2*2, 3*2), exists=True) check((3*2, 2), (15*2, (3-1)*2), exists=False) def test_internal_overlap_slices(): # Slicing an array never generates internal overlap x = np.zeros([17,34,71,97], dtype=np.int16) rng = np.random.RandomState(1234) def random_slice(n, step): start = rng.randint(0, n+1, dtype=np.intp) stop = rng.randint(start, n+1, dtype=np.intp) if rng.randint(0, 2, dtype=np.intp) == 0: stop, start = start, stop step *= -1 return slice(start, stop, step) cases = 0 min_count = 5000 while cases < min_count: steps = tuple(rng.randint(1, 11, dtype=np.intp) if rng.randint(0, 5, dtype=np.intp) == 0 else 1 for j in range(x.ndim)) t1 = np.arange(x.ndim) rng.shuffle(t1) s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps)) a = x[s1].transpose(t1) assert_(not internal_overlap(a)) cases += 1 def check_internal_overlap(a, manual_expected=None): got = internal_overlap(a) # Brute-force check m = set() ranges = tuple(xrange(n) for n in a.shape) for v in itertools.product(*ranges): offset = sum(s*w for s, w in zip(a.strides, v)) if offset in m: expected = True break else: m.add(offset) else: expected = False # Compare if got != expected: assert_equal(got, expected, err_msg=repr((a.strides, a.shape))) if manual_expected is not None and expected != manual_expected: assert_equal(expected, manual_expected) return got def test_internal_overlap_manual(): # Stride tricks can construct arrays with internal overlap # We don't care about memory bounds, the array is not # read/write accessed x = np.arange(1).astype(np.int8) # Check low-dimensional special cases check_internal_overlap(x, False) # 1-dim check_internal_overlap(x.reshape([]), False) # 0-dim a = as_strided(x, strides=(3, 4), shape=(4, 4)) check_internal_overlap(a, False) a = as_strided(x, strides=(3, 4), shape=(5, 4)) check_internal_overlap(a, True) a = as_strided(x, strides=(0,), shape=(0,)) check_internal_overlap(a, False) a = as_strided(x, strides=(0,), shape=(1,)) check_internal_overlap(a, False) a = as_strided(x, strides=(0,), shape=(2,)) check_internal_overlap(a, True) a = as_strided(x, strides=(0, -9993), shape=(87, 22)) check_internal_overlap(a, True) a = as_strided(x, strides=(0, -9993), shape=(1, 22)) check_internal_overlap(a, False) a = as_strided(x, strides=(0, -9993), shape=(0, 22)) check_internal_overlap(a, False) def test_internal_overlap_fuzz(): # Fuzz check; the brute-force check is fairly slow x = np.arange(1).astype(np.int8) overlap = 0 no_overlap = 0 min_count = 100 rng = np.random.RandomState(1234) while min(overlap, no_overlap) < min_count: ndim = rng.randint(1, 4, dtype=np.intp) strides = tuple(rng.randint(-1000, 1000, dtype=np.intp) for j in range(ndim)) shape = tuple(rng.randint(1, 30, dtype=np.intp) for j in range(ndim)) a = as_strided(x, strides=strides, shape=shape) result = check_internal_overlap(a) if result: overlap += 1 else: no_overlap += 1 def test_non_ndarray_inputs(): # Regression check for gh-5604 class MyArray(object): def __init__(self, data): self.data = data @property def __array_interface__(self): return self.data.__array_interface__ class MyArray2(object): def __init__(self, data): self.data = data def __array__(self): return self.data for cls in [MyArray, MyArray2]: x = np.arange(5) assert_(np.may_share_memory(cls(x[::2]), x[1::2])) assert_(not np.shares_memory(cls(x[::2]), x[1::2])) assert_(np.shares_memory(cls(x[1::3]), x[::2])) assert_(np.may_share_memory(cls(x[1::3]), x[::2])) if __name__ == "__main__": run_module_suite()