Server : Apache System : Linux indy02.toastserver.com 3.10.0-962.3.2.lve1.5.85.el7.x86_64 #1 SMP Thu Apr 18 15:18:36 UTC 2024 x86_64 User : palandch ( 1163) PHP Version : 7.1.33 Disable Function : NONE Directory : /opt/alt/python27/lib64/python2.7/site-packages/numpy/core/tests/ |
from __future__ import division, absolute_import, print_function import warnings import numpy as np from numpy.testing import ( TestCase, run_module_suite, assert_, assert_equal, assert_array_equal, assert_raises ) class TestEinSum(TestCase): def test_einsum_errors(self): # Need enough arguments assert_raises(ValueError, np.einsum) assert_raises(ValueError, np.einsum, "") # subscripts must be a string assert_raises(TypeError, np.einsum, 0, 0) # out parameter must be an array assert_raises(TypeError, np.einsum, "", 0, out='test') # order parameter must be a valid order assert_raises(TypeError, np.einsum, "", 0, order='W') # casting parameter must be a valid casting assert_raises(ValueError, np.einsum, "", 0, casting='blah') # dtype parameter must be a valid dtype assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type') # other keyword arguments are rejected assert_raises(TypeError, np.einsum, "", 0, bad_arg=0) # issue 4528 revealed a segfault with this call assert_raises(TypeError, np.einsum, *(None,)*63) # number of operands must match count in subscripts string assert_raises(ValueError, np.einsum, "", 0, 0) assert_raises(ValueError, np.einsum, ",", 0, [0], [0]) assert_raises(ValueError, np.einsum, ",", [0]) # can't have more subscripts than dimensions in the operand assert_raises(ValueError, np.einsum, "i", 0) assert_raises(ValueError, np.einsum, "ij", [0, 0]) assert_raises(ValueError, np.einsum, "...i", 0) assert_raises(ValueError, np.einsum, "i...j", [0, 0]) assert_raises(ValueError, np.einsum, "i...", 0) assert_raises(ValueError, np.einsum, "ij...", [0, 0]) # invalid ellipsis assert_raises(ValueError, np.einsum, "i..", [0, 0]) assert_raises(ValueError, np.einsum, ".i...", [0, 0]) assert_raises(ValueError, np.einsum, "j->..j", [0, 0]) assert_raises(ValueError, np.einsum, "j->.j...", [0, 0]) # invalid subscript character assert_raises(ValueError, np.einsum, "i%...", [0, 0]) assert_raises(ValueError, np.einsum, "...j$", [0, 0]) assert_raises(ValueError, np.einsum, "i->&", [0, 0]) # output subscripts must appear in input assert_raises(ValueError, np.einsum, "i->ij", [0, 0]) # output subscripts may only be specified once assert_raises(ValueError, np.einsum, "ij->jij", [[0, 0], [0, 0]]) # dimensions much match when being collapsed assert_raises(ValueError, np.einsum, "ii", np.arange(6).reshape(2, 3)) assert_raises(ValueError, np.einsum, "ii->i", np.arange(6).reshape(2, 3)) # broadcasting to new dimensions must be enabled explicitly assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3)) assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]], out=np.arange(4).reshape(2, 2)) def test_einsum_views(self): # pass-through a = np.arange(6) a.shape = (2, 3) b = np.einsum("...", a) assert_(b.base is a) b = np.einsum(a, [Ellipsis]) assert_(b.base is a) b = np.einsum("ij", a) assert_(b.base is a) assert_equal(b, a) b = np.einsum(a, [0, 1]) assert_(b.base is a) assert_equal(b, a) # output is writeable whenever input is writeable b = np.einsum("...", a) assert_(b.flags['WRITEABLE']) a.flags['WRITEABLE'] = False b = np.einsum("...", a) assert_(not b.flags['WRITEABLE']) # transpose a = np.arange(6) a.shape = (2, 3) b = np.einsum("ji", a) assert_(b.base is a) assert_equal(b, a.T) b = np.einsum(a, [1, 0]) assert_(b.base is a) assert_equal(b, a.T) # diagonal a = np.arange(9) a.shape = (3, 3) b = np.einsum("ii->i", a) assert_(b.base is a) assert_equal(b, [a[i, i] for i in range(3)]) b = np.einsum(a, [0, 0], [0]) assert_(b.base is a) assert_equal(b, [a[i, i] for i in range(3)]) # diagonal with various ways of broadcasting an additional dimension a = np.arange(27) a.shape = (3, 3, 3) b = np.einsum("...ii->...i", a) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0]) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) b = np.einsum("ii...->...i", a) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)]) b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0]) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)]) b = np.einsum("...ii->i...", a) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis]) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum("jii->ij", a) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum(a, [1, 0, 0], [0, 1]) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum("ii...->i...", a) assert_(b.base is a) assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis]) assert_(b.base is a) assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) b = np.einsum("i...i->i...", a) assert_(b.base is a) assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis]) assert_(b.base is a) assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) b = np.einsum("i...i->...i", a) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)]) b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0]) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)]) # triple diagonal a = np.arange(27) a.shape = (3, 3, 3) b = np.einsum("iii->i", a) assert_(b.base is a) assert_equal(b, [a[i, i, i] for i in range(3)]) b = np.einsum(a, [0, 0, 0], [0]) assert_(b.base is a) assert_equal(b, [a[i, i, i] for i in range(3)]) # swap axes a = np.arange(24) a.shape = (2, 3, 4) b = np.einsum("ijk->jik", a) assert_(b.base is a) assert_equal(b, a.swapaxes(0, 1)) b = np.einsum(a, [0, 1, 2], [1, 0, 2]) assert_(b.base is a) assert_equal(b, a.swapaxes(0, 1)) def check_einsum_sums(self, dtype): # Check various sums. Does many sizes to exercise unrolled loops. # sum(a, axis=-1) for n in range(1, 17): a = np.arange(n, dtype=dtype) assert_equal(np.einsum("i->", a), np.sum(a, axis=-1).astype(dtype)) assert_equal(np.einsum(a, [0], []), np.sum(a, axis=-1).astype(dtype)) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("...i->...", a), np.sum(a, axis=-1).astype(dtype)) assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis]), np.sum(a, axis=-1).astype(dtype)) # sum(a, axis=0) for n in range(1, 17): a = np.arange(2*n, dtype=dtype).reshape(2, n) assert_equal(np.einsum("i...->...", a), np.sum(a, axis=0).astype(dtype)) assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]), np.sum(a, axis=0).astype(dtype)) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("i...->...", a), np.sum(a, axis=0).astype(dtype)) assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]), np.sum(a, axis=0).astype(dtype)) # trace(a) for n in range(1, 17): a = np.arange(n*n, dtype=dtype).reshape(n, n) assert_equal(np.einsum("ii", a), np.trace(a).astype(dtype)) assert_equal(np.einsum(a, [0, 0]), np.trace(a).astype(dtype)) # multiply(a, b) assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case for n in range(1, 17): a = np.arange(3*n, dtype=dtype).reshape(3, n) b = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("..., ...", a, b), np.multiply(a, b)) assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis]), np.multiply(a, b)) # inner(a,b) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("...i, ...i", a, b), np.inner(a, b)) assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0]), np.inner(a, b)) for n in range(1, 11): a = np.arange(n*3*2, dtype=dtype).reshape(n, 3, 2) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("i..., i...", a, b), np.inner(a.T, b.T).T) assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis]), np.inner(a.T, b.T).T) # outer(a,b) for n in range(1, 17): a = np.arange(3, dtype=dtype)+1 b = np.arange(n, dtype=dtype)+1 assert_equal(np.einsum("i,j", a, b), np.outer(a, b)) assert_equal(np.einsum(a, [0], b, [1]), np.outer(a, b)) # Suppress the complex warnings for the 'as f8' tests with warnings.catch_warnings(): warnings.simplefilter('ignore', np.ComplexWarning) # matvec(a,b) / a.dot(b) where a is matrix, b is vector for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("ij, j", a, b), np.dot(a, b)) assert_equal(np.einsum(a, [0, 1], b, [1]), np.dot(a, b)) c = np.arange(4, dtype=dtype) np.einsum("ij,j", a, b, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1], b, [1], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("ji,j", a.T, b.T), np.dot(b.T, a.T)) assert_equal(np.einsum(a.T, [1, 0], b.T, [1]), np.dot(b.T, a.T)) c = np.arange(4, dtype=dtype) np.einsum("ji,j", a.T, b.T, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(b.T.astype('f8'), a.T.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a.T, [1, 0], b.T, [1], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(b.T.astype('f8'), a.T.astype('f8')).astype(dtype)) # matmat(a,b) / a.dot(b) where a is matrix, b is matrix for n in range(1, 17): if n < 8 or dtype != 'f2': a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n*6, dtype=dtype).reshape(n, 6) assert_equal(np.einsum("ij,jk", a, b), np.dot(a, b)) assert_equal(np.einsum(a, [0, 1], b, [1, 2]), np.dot(a, b)) for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n*6, dtype=dtype).reshape(n, 6) c = np.arange(24, dtype=dtype).reshape(4, 6) np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1], b, [1, 2], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) # matrix triple product (note this is not currently an efficient # way to multiply 3 matrices) a = np.arange(12, dtype=dtype).reshape(3, 4) b = np.arange(20, dtype=dtype).reshape(4, 5) c = np.arange(30, dtype=dtype).reshape(5, 6) if dtype != 'f2': assert_equal(np.einsum("ij,jk,kl", a, b, c), a.dot(b).dot(c)) assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3]), a.dot(b).dot(c)) d = np.arange(18, dtype=dtype).reshape(3, 6) np.einsum("ij,jk,kl", a, b, c, out=d, dtype='f8', casting='unsafe') tgt = a.astype('f8').dot(b.astype('f8')) tgt = tgt.dot(c.astype('f8')).astype(dtype) assert_equal(d, tgt) d[...] = 0 np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d, dtype='f8', casting='unsafe') tgt = a.astype('f8').dot(b.astype('f8')) tgt = tgt.dot(c.astype('f8')).astype(dtype) assert_equal(d, tgt) # tensordot(a, b) if np.dtype(dtype) != np.dtype('f2'): a = np.arange(60, dtype=dtype).reshape(3, 4, 5) b = np.arange(24, dtype=dtype).reshape(4, 3, 2) assert_equal(np.einsum("ijk, jil -> kl", a, b), np.tensordot(a, b, axes=([1, 0], [0, 1]))) assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]), np.tensordot(a, b, axes=([1, 0], [0, 1]))) c = np.arange(10, dtype=dtype).reshape(5, 2) np.einsum("ijk,jil->kl", a, b, out=c, dtype='f8', casting='unsafe') assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), axes=([1, 0], [0, 1])).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c, dtype='f8', casting='unsafe') assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), axes=([1, 0], [0, 1])).astype(dtype)) # logical_and(logical_and(a!=0, b!=0), c!=0) a = np.array([1, 3, -2, 0, 12, 13, 0, 1], dtype=dtype) b = np.array([0, 3.5, 0., -2, 0, 1, 3, 12], dtype=dtype) c = np.array([True, True, False, True, True, False, True, True]) assert_equal(np.einsum("i,i,i->i", a, b, c, dtype='?', casting='unsafe'), np.logical_and(np.logical_and(a != 0, b != 0), c != 0)) assert_equal(np.einsum(a, [0], b, [0], c, [0], [0], dtype='?', casting='unsafe'), np.logical_and(np.logical_and(a != 0, b != 0), c != 0)) a = np.arange(9, dtype=dtype) assert_equal(np.einsum(",i->", 3, a), 3*np.sum(a)) assert_equal(np.einsum(3, [], a, [0], []), 3*np.sum(a)) assert_equal(np.einsum("i,->", a, 3), 3*np.sum(a)) assert_equal(np.einsum(a, [0], 3, [], []), 3*np.sum(a)) # Various stride0, contiguous, and SSE aligned variants for n in range(1, 25): a = np.arange(n, dtype=dtype) if np.dtype(dtype).itemsize > 1: assert_equal(np.einsum("...,...", a, a), np.multiply(a, a)) assert_equal(np.einsum("i,i", a, a), np.dot(a, a)) assert_equal(np.einsum("i,->i", a, 2), 2*a) assert_equal(np.einsum(",i->i", 2, a), 2*a) assert_equal(np.einsum("i,->", a, 2), 2*np.sum(a)) assert_equal(np.einsum(",i->", 2, a), 2*np.sum(a)) assert_equal(np.einsum("...,...", a[1:], a[:-1]), np.multiply(a[1:], a[:-1])) assert_equal(np.einsum("i,i", a[1:], a[:-1]), np.dot(a[1:], a[:-1])) assert_equal(np.einsum("i,->i", a[1:], 2), 2*a[1:]) assert_equal(np.einsum(",i->i", 2, a[1:]), 2*a[1:]) assert_equal(np.einsum("i,->", a[1:], 2), 2*np.sum(a[1:])) assert_equal(np.einsum(",i->", 2, a[1:]), 2*np.sum(a[1:])) # An object array, summed as the data type a = np.arange(9, dtype=object) b = np.einsum("i->", a, dtype=dtype, casting='unsafe') assert_equal(b, np.sum(a)) assert_equal(b.dtype, np.dtype(dtype)) b = np.einsum(a, [0], [], dtype=dtype, casting='unsafe') assert_equal(b, np.sum(a)) assert_equal(b.dtype, np.dtype(dtype)) # A case which was failing (ticket #1885) p = np.arange(2) + 1 q = np.arange(4).reshape(2, 2) + 3 r = np.arange(4).reshape(2, 2) + 7 assert_equal(np.einsum('z,mz,zm->', p, q, r), 253) def test_einsum_sums_int8(self): self.check_einsum_sums('i1') def test_einsum_sums_uint8(self): self.check_einsum_sums('u1') def test_einsum_sums_int16(self): self.check_einsum_sums('i2') def test_einsum_sums_uint16(self): self.check_einsum_sums('u2') def test_einsum_sums_int32(self): self.check_einsum_sums('i4') def test_einsum_sums_uint32(self): self.check_einsum_sums('u4') def test_einsum_sums_int64(self): self.check_einsum_sums('i8') def test_einsum_sums_uint64(self): self.check_einsum_sums('u8') def test_einsum_sums_float16(self): self.check_einsum_sums('f2') def test_einsum_sums_float32(self): self.check_einsum_sums('f4') def test_einsum_sums_float64(self): self.check_einsum_sums('f8') def test_einsum_sums_longdouble(self): self.check_einsum_sums(np.longdouble) def test_einsum_sums_cfloat64(self): self.check_einsum_sums('c8') def test_einsum_sums_cfloat128(self): self.check_einsum_sums('c16') def test_einsum_sums_clongdouble(self): self.check_einsum_sums(np.clongdouble) def test_einsum_misc(self): # This call used to crash because of a bug in # PyArray_AssignZero a = np.ones((1, 2)) b = np.ones((2, 2, 1)) assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]]) # The iterator had an issue with buffering this reduction a = np.ones((5, 12, 4, 2, 3), np.int64) b = np.ones((5, 12, 11), np.int64) assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b), np.einsum('ijklm,ijn->', a, b)) # Issue #2027, was a problem in the contiguous 3-argument # inner loop implementation a = np.arange(1, 3) b = np.arange(1, 5).reshape(2, 2) c = np.arange(1, 9).reshape(4, 2) assert_equal(np.einsum('x,yx,zx->xzy', a, b, c), [[[1, 3], [3, 9], [5, 15], [7, 21]], [[8, 16], [16, 32], [24, 48], [32, 64]]]) def test_einsum_broadcast(self): # Issue #2455 change in handling ellipsis # remove the 'middle broadcast' error # only use the 'RIGHT' iteration in prepare_op_axes # adds auto broadcast on left where it belongs # broadcast on right has to be explicit A = np.arange(2*3*4).reshape(2,3,4) B = np.arange(3) ref = np.einsum('ijk,j->ijk',A, B) assert_equal(np.einsum('ij...,j...->ij...',A, B), ref) assert_equal(np.einsum('ij...,...j->ij...',A, B), ref) assert_equal(np.einsum('ij...,j->ij...',A, B), ref) # used to raise error A = np.arange(12).reshape((4,3)) B = np.arange(6).reshape((3,2)) ref = np.einsum('ik,kj->ij', A, B) assert_equal(np.einsum('ik...,k...->i...', A, B), ref) assert_equal(np.einsum('ik...,...kj->i...j', A, B), ref) assert_equal(np.einsum('...k,kj', A, B), ref) # used to raise error assert_equal(np.einsum('ik,k...->i...', A, B), ref) # used to raise error dims = [2,3,4,5] a = np.arange(np.prod(dims)).reshape(dims) v = np.arange(dims[2]) ref = np.einsum('ijkl,k->ijl', a, v) assert_equal(np.einsum('ijkl,k', a, v), ref) assert_equal(np.einsum('...kl,k', a, v), ref) # used to raise error assert_equal(np.einsum('...kl,k...', a, v), ref) # no real diff from 1st J,K,M = 160,160,120 A = np.arange(J*K*M).reshape(1,1,1,J,K,M) B = np.arange(J*K*M*3).reshape(J,K,M,3) ref = np.einsum('...lmn,...lmno->...o', A, B) assert_equal(np.einsum('...lmn,lmno->...o', A, B), ref) # used to raise error def test_einsum_fixedstridebug(self): # Issue #4485 obscure einsum bug # This case revealed a bug in nditer where it reported a stride # as 'fixed' (0) when it was in fact not fixed during processing # (0 or 4). The reason for the bug was that the check for a fixed # stride was using the information from the 2D inner loop reuse # to restrict the iteration dimensions it had to validate to be # the same, but that 2D inner loop reuse logic is only triggered # during the buffer copying step, and hence it was invalid to # rely on those values. The fix is to check all the dimensions # of the stride in question, which in the test case reveals that # the stride is not fixed. # # NOTE: This test is triggered by the fact that the default buffersize, # used by einsum, is 8192, and 3*2731 = 8193, is larger than that # and results in a mismatch between the buffering and the # striding for operand A. A = np.arange(2*3).reshape(2,3).astype(np.float32) B = np.arange(2*3*2731).reshape(2,3,2731).astype(np.int16) es = np.einsum('cl,cpx->lpx', A, B) tp = np.tensordot(A, B, axes=(0, 0)) assert_equal(es, tp) # The following is the original test case from the bug report, # made repeatable by changing random arrays to aranges. A = np.arange(3*3).reshape(3,3).astype(np.float64) B = np.arange(3*3*64*64).reshape(3,3,64,64).astype(np.float32) es = np.einsum('cl,cpxy->lpxy', A,B) tp = np.tensordot(A,B, axes=(0,0)) assert_equal(es, tp) def test_einsum_fixed_collapsingbug(self): # Issue #5147. # The bug only occured when output argument of einssum was used. x = np.random.normal(0, 1, (5, 5, 5, 5)) y1 = np.zeros((5, 5)) np.einsum('aabb->ab', x, out=y1) idx = np.arange(5) y2 = x[idx[:, None], idx[:, None], idx, idx] assert_equal(y1, y2) def test_einsum_all_contig_non_contig_output(self): # Issue gh-5907, tests that the all contiguous special case # actually checks the contiguity of the output x = np.ones((5, 5)) out = np.ones(10)[::2] correct_base = np.ones(10) correct_base[::2] = 5 # Always worked (inner iteration is done with 0-stride): np.einsum('mi,mi,mi->m', x, x, x, out=out) assert_array_equal(out.base, correct_base) # Example 1: out = np.ones(10)[::2] np.einsum('im,im,im->m', x, x, x, out=out) assert_array_equal(out.base, correct_base) # Example 2, buffering causes x to be contiguous but # special cases do not catch the operation before: out = np.ones((2, 2, 2))[..., 0] correct_base = np.ones((2, 2, 2)) correct_base[..., 0] = 2 x = np.ones((2, 2), np.float32) np.einsum('ij,jk->ik', x, x, out=out) assert_array_equal(out.base, correct_base) def test_small_boolean_arrays(self): # See gh-5946. # Use array of True embedded in False. a = np.zeros((16, 1, 1), dtype=np.bool_)[:2] a[...] = True out = np.zeros((16, 1, 1), dtype=np.bool_)[:2] tgt = np.ones((2,1,1), dtype=np.bool_) res = np.einsum('...ij,...jk->...ik', a, a, out=out) assert_equal(res, tgt) if __name__ == "__main__": run_module_suite()