Server : Apache System : Linux indy02.toastserver.com 3.10.0-962.3.2.lve1.5.85.el7.x86_64 #1 SMP Thu Apr 18 15:18:36 UTC 2024 x86_64 User : palandch ( 1163) PHP Version : 7.1.33 Disable Function : NONE Directory : /opt/alt/python27/lib64/python2.7/site-packages/matplotlib/ |
""" Tick locating and formatting ============================ This module contains classes to support completely configurable tick locating and formatting. Although the locators know nothing about major or minor ticks, they are used by the Axis class to support major and minor tick locating and formatting. Generic tick locators and formatters are provided, as well as domain specific custom ones.. Tick locating ------------- The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is MultipleLocator. You initialize this with a base, eg 10, and it picks axis limits and ticks that are multiples of your base. The Locator subclasses defined here are :class:`NullLocator` No ticks :class:`FixedLocator` Tick locations are fixed :class:`IndexLocator` locator for index plots (eg. where x = range(len(y))) :class:`LinearLocator` evenly spaced ticks from min to max :class:`LogLocator` logarithmically ticks from min to max :class:`MultipleLocator` ticks and range are a multiple of base; either integer or float :class:`OldAutoLocator` choose a MultipleLocator and dyamically reassign it for intelligent ticking during navigation :class:`MaxNLocator` finds up to a max number of ticks at nice locations :class:`AutoLocator` :class:`MaxNLocator` with simple defaults. This is the default tick locator for most plotting. There are a number of locators specialized for date locations - see the dates module You can define your own locator by deriving from Locator. You must override the __call__ method, which returns a sequence of locations, and you will probably want to override the autoscale method to set the view limits from the data limits. If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y axis instance. The relevant methods are:: ax.xaxis.set_major_locator( xmajorLocator ) ax.xaxis.set_minor_locator( xminorLocator ) ax.yaxis.set_major_locator( ymajorLocator ) ax.yaxis.set_minor_locator( yminorLocator ) The default minor locator is the NullLocator, eg no minor ticks on by default. Tick formatting --------------- Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick value and returns a string to the axis. :class:`NullFormatter` no labels on the ticks :class:`IndexFormatter` set the strings from a list of labels :class:`FixedFormatter` set the strings manually for the labels :class:`FuncFormatter` user defined function sets the labels :class:`FormatStrFormatter` use a sprintf format string :class:`ScalarFormatter` default formatter for scalars; autopick the fmt string :class:`LogFormatter` formatter for log axes You can derive your own formatter from the Formatter base class by simply overriding the ``__call__`` method. The formatter class has access to the axis view and data limits. To control the major and minor tick label formats, use one of the following methods:: ax.xaxis.set_major_formatter( xmajorFormatter ) ax.xaxis.set_minor_formatter( xminorFormatter ) ax.yaxis.set_major_formatter( ymajorFormatter ) ax.yaxis.set_minor_formatter( yminorFormatter ) See :ref:`pylab_examples-major_minor_demo1` for an example of setting major an minor ticks. See the :mod:`matplotlib.dates` module for more information and examples of using date locators and formatters. """ from __future__ import division import decimal import math import numpy as np from matplotlib import rcParams from matplotlib import cbook from matplotlib import transforms as mtransforms class TickHelper: axis = None class DummyAxis: def __init__(self): self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() def get_view_interval(self): return self.viewLim.intervalx def set_view_interval(self, vmin, vmax): self.viewLim.intervalx = vmin, vmax def get_data_interval(self): return self.dataLim.intervalx def set_data_interval(self, vmin, vmax): self.dataLim.intervalx = vmin, vmax def set_axis(self, axis): self.axis = axis def create_dummy_axis(self): if self.axis is None: self.axis = self.DummyAxis() def set_view_interval(self, vmin, vmax): self.axis.set_view_interval(vmin, vmax) def set_data_interval(self, vmin, vmax): self.axis.set_data_interval(vmin, vmax) def set_bounds(self, vmin, vmax): self.set_view_interval(vmin, vmax) self.set_data_interval(vmin, vmax) class Formatter(TickHelper): """ Convert the tick location to a string """ # some classes want to see all the locs to help format # individual ones locs = [] def __call__(self, x, pos=None): 'Return the format for tick val x at position pos; pos=None indicated unspecified' raise NotImplementedError('Derived must overide') def format_data(self,value): return self.__call__(value) def format_data_short(self,value): 'return a short string version' return self.format_data(value) def get_offset(self): return '' def set_locs(self, locs): self.locs = locs def fix_minus(self, s): """ some classes may want to replace a hyphen for minus with the proper unicode symbol as described `here <http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&group_id=80706&atid=560720>`_. The default is to do nothing Note, if you use this method, eg in :meth`format_data` or call, you probably don't want to use it for :meth:`format_data_short` since the toolbar uses this for interative coord reporting and I doubt we can expect GUIs across platforms will handle the unicode correctly. So for now the classes that override :meth:`fix_minus` should have an explicit :meth:`format_data_short` method """ return s class IndexFormatter(Formatter): """ format the position x to the nearest i-th label where i=int(x+0.5) """ def __init__(self, labels): self.labels = labels self.n = len(labels) def __call__(self, x, pos=None): 'Return the format for tick val x at position pos; pos=None indicated unspecified' i = int(x+0.5) if i<0: return '' elif i>=self.n: return '' else: return self.labels[i] class NullFormatter(Formatter): 'Always return the empty string' def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' return '' class FixedFormatter(Formatter): 'Return fixed strings for tick labels' def __init__(self, seq): """ *seq* is a sequence of strings. For positions ``i < len(seq)`` return *seq[i]* regardless of *x*. Otherwise return '' """ self.seq = seq self.offset_string = '' def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' if pos is None or pos>=len(self.seq): return '' else: return self.seq[pos] def get_offset(self): return self.offset_string def set_offset_string(self, ofs): self.offset_string = ofs class FuncFormatter(Formatter): """ User defined function for formatting """ def __init__(self, func): self.func = func def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' return self.func(x, pos) class FormatStrFormatter(Formatter): """ Use a format string to format the tick """ def __init__(self, fmt): self.fmt = fmt def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' return self.fmt % x class OldScalarFormatter(Formatter): """ Tick location is a plain old number. """ def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' xmin, xmax = self.axis.get_view_interval() d = abs(xmax - xmin) return self.pprint_val(x,d) def pprint_val(self, x, d): #if the number is not too big and it's an int, format it as an #int if abs(x)<1e4 and x==int(x): return '%d' % x if d < 1e-2: fmt = '%1.3e' elif d < 1e-1: fmt = '%1.3f' elif d > 1e5: fmt = '%1.1e' elif d > 10 : fmt = '%1.1f' elif d > 1 : fmt = '%1.2f' else: fmt = '%1.3f' s = fmt % x #print d, x, fmt, s tup = s.split('e') if len(tup)==2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' %(mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s class ScalarFormatter(Formatter): """ Tick location is a plain old number. If useOffset==True and the data range is much smaller than the data average, then an offset will be determined such that the tick labels are meaningful. Scientific notation is used for data < 10^-n or data >= 10^m, where n and m are the power limits set using set_powerlimits((n,m)). The defaults for these are controlled by the axes.formatter.limits rc parameter. """ def __init__(self, useOffset=True, useMathText=False): # useOffset allows plotting small data ranges with large offsets: # for example: [1+1e-9,1+2e-9,1+3e-9] # useMathText will render the offset and scientific notation in mathtext self.set_useOffset(useOffset) self._usetex = rcParams['text.usetex'] self._useMathText = useMathText self.orderOfMagnitude = 0 self.format = '' self._scientific = True self._powerlimits = rcParams['axes.formatter.limits'] def get_useOffset(self): return self._useOffset def set_useOffset(self, val): if val in [True, False]: self.offset = 0 self._useOffset = val else: self._useOffset = False self.offset = val useOffset = property(fget=get_useOffset, fset=set_useOffset) def fix_minus(self, s): 'use a unicode minus rather than hyphen' if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']: return s else: return s.replace('-', u'\u2212') def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' if len(self.locs)==0: return '' else: s = self.pprint_val(x) return self.fix_minus(s) def set_scientific(self, b): '''True or False to turn scientific notation on or off see also :meth:`set_powerlimits` ''' self._scientific = bool(b) def set_powerlimits(self, lims): ''' Sets size thresholds for scientific notation. e.g. ``formatter.set_powerlimits((-3, 4))`` sets the pre-2007 default in which scientific notation is used for numbers less than 1e-3 or greater than 1e4. See also :meth:`set_scientific`. ''' assert len(lims) == 2, "argument must be a sequence of length 2" self._powerlimits = lims def format_data_short(self,value): 'return a short formatted string representation of a number' return '%-12g'%value def format_data(self,value): 'return a formatted string representation of a number' s = self._formatSciNotation('%1.10e'% value) return self.fix_minus(s) def get_offset(self): """Return scientific notation, plus offset""" if len(self.locs)==0: return '' s = '' if self.orderOfMagnitude or self.offset: offsetStr = '' sciNotStr = '' if self.offset: offsetStr = self.format_data(self.offset) if self.offset > 0: offsetStr = '+' + offsetStr if self.orderOfMagnitude: if self._usetex or self._useMathText: sciNotStr = self.format_data(10**self.orderOfMagnitude) else: sciNotStr = '1e%d'% self.orderOfMagnitude if self._useMathText: if sciNotStr != '': sciNotStr = r'\times\mathdefault{%s}' % sciNotStr s = ''.join(('$',sciNotStr,r'\mathdefault{',offsetStr,'}$')) elif self._usetex: if sciNotStr != '': sciNotStr = r'\times%s' % sciNotStr s = ''.join(('$',sciNotStr,offsetStr,'$')) else: s = ''.join((sciNotStr,offsetStr)) return self.fix_minus(s) def set_locs(self, locs): 'set the locations of the ticks' self.locs = locs if len(self.locs) > 0: vmin, vmax = self.axis.get_view_interval() d = abs(vmax-vmin) if self._useOffset: self._set_offset(d) self._set_orderOfMagnitude(d) self._set_format() def _set_offset(self, range): # offset of 20,001 is 20,000, for example locs = self.locs if locs is None or not len(locs) or range == 0: self.offset = 0 return ave_loc = np.mean(locs) if ave_loc: # dont want to take log10(0) ave_oom = math.floor(math.log10(np.mean(np.absolute(locs)))) range_oom = math.floor(math.log10(range)) if np.absolute(ave_oom-range_oom) >= 3: # four sig-figs if ave_loc < 0: self.offset = math.ceil(np.max(locs)/10**range_oom)*10**range_oom else: self.offset = math.floor(np.min(locs)/10**(range_oom))*10**(range_oom) else: self.offset = 0 def _set_orderOfMagnitude(self,range): # if scientific notation is to be used, find the appropriate exponent # if using an numerical offset, find the exponent after applying the offset if not self._scientific: self.orderOfMagnitude = 0 return locs = np.absolute(self.locs) if self.offset: oom = math.floor(math.log10(range)) else: if locs[0] > locs[-1]: val = locs[0] else: val = locs[-1] if val == 0: oom = 0 else: oom = math.floor(math.log10(val)) if oom <= self._powerlimits[0]: self.orderOfMagnitude = oom elif oom >= self._powerlimits[1]: self.orderOfMagnitude = oom else: self.orderOfMagnitude = 0 def _set_format(self): # set the format string to format all the ticklabels # The floating point black magic (adding 1e-15 and formatting # to 8 digits) may warrant review and cleanup. locs = (np.asarray(self.locs)-self.offset) / 10**self.orderOfMagnitude+1e-15 sigfigs = [len(str('%1.8f'% loc).split('.')[1].rstrip('0')) \ for loc in locs] sigfigs.sort() self.format = '%1.' + str(sigfigs[-1]) + 'f' if self._usetex: self.format = '$%s$' % self.format elif self._useMathText: self.format = '$\mathdefault{%s}$' % self.format def pprint_val(self, x): xp = (x-self.offset)/10**self.orderOfMagnitude if np.absolute(xp) < 1e-8: xp = 0 return self.format % xp def _formatSciNotation(self, s): # transform 1e+004 into 1e4, for example tup = s.split('e') try: significand = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') if self._useMathText or self._usetex: if significand == '1': # reformat 1x10^y as 10^y significand = '' if exponent: exponent = '10^{%s%s}'%(sign, exponent) if significand and exponent: return r'%s{\times}%s'%(significand, exponent) else: return r'%s%s'%(significand, exponent) else: s = ('%se%s%s' %(significand, sign, exponent)).rstrip('e') return s except IndexError, msg: return s class LogFormatter(Formatter): """ Format values for log axis; if attribute *decadeOnly* is True, only the decades will be labelled. """ def __init__(self, base=10.0, labelOnlyBase = True): """ *base* is used to locate the decade tick, which will be the only one to be labeled if *labelOnlyBase* is ``False`` """ self._base = base+0.0 self.labelOnlyBase = labelOnlyBase self.decadeOnly = True def base(self, base): 'change the *base* for labeling - warning: should always match the base used for :class:`LogLocator`' self._base = base def label_minor(self, labelOnlyBase): 'switch on/off minor ticks labeling' self.labelOnlyBase = labelOnlyBase def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' vmin, vmax = self.axis.get_view_interval() d = abs(vmax - vmin) b = self._base if x == 0.0: return '0' sign = np.sign(x) # only label the decades fx = math.log(abs(x))/math.log(b) isDecade = is_decade(fx) if not isDecade and self.labelOnlyBase: s = '' elif x>10000: s= '%1.0e'%x elif x<1: s = '%1.0e'%x else : s = self.pprint_val(x, d) if sign == -1: s = '-%s' % s return self.fix_minus(s) def format_data(self, value): b = self.labelOnlyBase self.labelOnlyBase = False value = cbook.strip_math(self.__call__(value)) self.labelOnlyBase = b return value def format_data_short(self,value): 'return a short formatted string representation of a number' return '%-12g'%value def pprint_val(self, x, d): #if the number is not too big and it's an int, format it as an #int if abs(x) < 1e4 and x == int(x): return '%d' % x if d < 1e-2: fmt = '%1.3e' elif d < 1e-1: fmt = '%1.3f' elif d > 1e5: fmt = '%1.1e' elif d > 10 : fmt = '%1.1f' elif d > 1 : fmt = '%1.2f' else: fmt = '%1.3f' s = fmt % x #print d, x, fmt, s tup = s.split('e') if len(tup) == 2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' %(mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s class LogFormatterExponent(LogFormatter): """ Format values for log axis; using ``exponent = log_base(value)`` """ def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) d = abs(vmax-vmin) b=self._base if x == 0: return '0' sign = np.sign(x) # only label the decades fx = math.log(abs(x))/math.log(b) isDecade = is_close_to_int(fx) if not isDecade and self.labelOnlyBase: s = '' #if 0: pass elif fx>10000: s= '%1.0e'%fx #elif x<1: s = '$10^{%d}$'%fx #elif x<1: s = '10^%d'%fx elif fx<1: s = '%1.0e'%fx else : s = self.pprint_val(fx,d) if sign == -1: s = '-%s' % s return self.fix_minus(s) class LogFormatterMathtext(LogFormatter): """ Format values for log axis; using ``exponent = log_base(value)`` """ def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' b = self._base usetex = rcParams['text.usetex'] # only label the decades if x == 0: if usetex: return '$0$' else: return '$\mathdefault{0}$' sign = np.sign(x) fx = math.log(abs(x))/math.log(b) isDecade = is_close_to_int(fx) if sign == -1: sign_string = '-' else: sign_string = '' if not isDecade and self.labelOnlyBase: s = '' elif not isDecade: if usetex: s = r'$%s%d^{%.2f}$'% (sign_string, b, fx) else: s = '$\mathdefault{%s%d^{%.2f}}$'% (sign_string, b, fx) else: if usetex: s = r'$%s%d^{%d}$'% (sign_string, b, nearest_long(fx)) else: s = r'$\mathdefault{%s%d^{%d}}$'% (sign_string, b, nearest_long(fx)) return s class EngFormatter(Formatter): """ Formats axis values using engineering prefixes to represent powers of 1000, plus a specified unit, eg. 10 MHz instead of 1e7. """ # The SI engineering prefixes ENG_PREFIXES = { -24: "y", -21: "z", -18: "a", -15: "f", -12: "p", -9: "n", -6: u"\u03bc", # Greek letter mu -3: "m", 0: "", 3: "k", 6: "M", 9: "G", 12: "T", 15: "P", 18: "E", 21: "Z", 24: "Y" } def __init__(self, unit="", places=None): self.unit = unit self.places = places def __call__(self, x, pos=None): s = "%s%s" % (self.format_eng(x), self.unit) return self.fix_minus(s) def format_eng(self, num): """ Formats a number in engineering notation, appending a letter representing the power of 1000 of the original number. Some examples: >>> format_eng(0) for self.places = 0 '0' >>> format_eng(1000000) for self.places = 1 '1.0 M' >>> format_eng("-1e-6") for self.places = 2 u'-1.00 \u03bc' @param num: the value to represent @type num: either a numeric value or a string that can be converted to a numeric value (as per decimal.Decimal constructor) @return: engineering formatted string """ dnum = decimal.Decimal(str(num)) sign = 1 if dnum < 0: sign = -1 dnum = -dnum if dnum != 0: pow10 = decimal.Decimal(int(math.floor(dnum.log10()/3)*3)) else: pow10 = decimal.Decimal(0) pow10 = pow10.min(max(self.ENG_PREFIXES.keys())) pow10 = pow10.max(min(self.ENG_PREFIXES.keys())) prefix = self.ENG_PREFIXES[int(pow10)] mant = sign*dnum/(10**pow10) if self.places is None: format_str = u"%g %s" elif self.places == 0: format_str = u"%i %s" elif self.places > 0: format_str = (u"%%.%if %%s" % self.places) formatted = format_str % (mant, prefix) return formatted.strip() class Locator(TickHelper): """ Determine the tick locations; Note, you should not use the same locator between different :class:`~matplotlib.axis.Axis` because the locator stores references to the Axis data and view limits """ # some automatic tick locators can generate so many ticks they # kill the machine when you try and render them, see eg sf bug # report # https://sourceforge.net/tracker/index.php?func=detail&aid=2715172&group_id=80706&atid=560720. # This parameter is set to cause locators to raise an error if too # many ticks are generated MAXTICKS = 1000 def __call__(self): 'Return the locations of the ticks' raise NotImplementedError('Derived must override') def raise_if_exceeds(self, locs): 'raise a RuntimeError if Locator attempts to create more than MAXTICKS locs' if len(locs)>=self.MAXTICKS: raise RuntimeError('Locator attempting to generate %d ticks from %s to %s: exceeds Locator.MAXTICKS'%(len(locs), locs[0], locs[-1])) return locs def view_limits(self, vmin, vmax): """ select a scale for the range from vmin to vmax Normally This will be overridden. """ return mtransforms.nonsingular(vmin, vmax) def autoscale(self): 'autoscale the view limits' return self.view_limits(*self.axis.get_view_interval()) def pan(self, numsteps): 'Pan numticks (can be positive or negative)' ticks = self() numticks = len(ticks) vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) if numticks>2: step = numsteps*abs(ticks[0]-ticks[1]) else: d = abs(vmax-vmin) step = numsteps*d/6. vmin += step vmax += step self.axis.set_view_interval(vmin, vmax, ignore=True) def zoom(self, direction): "Zoom in/out on axis; if direction is >0 zoom in, else zoom out" vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) interval = abs(vmax-vmin) step = 0.1*interval*direction self.axis.set_view_interval(vmin + step, vmax - step, ignore=True) def refresh(self): 'refresh internal information based on current lim' pass class IndexLocator(Locator): """ Place a tick on every multiple of some base number of points plotted, eg on every 5th point. It is assumed that you are doing index plotting; ie the axis is 0, len(data). This is mainly useful for x ticks. """ def __init__(self, base, offset): 'place ticks on the i-th data points where (i-offset)%base==0' self._base = base self.offset = offset def __call__(self): 'Return the locations of the ticks' dmin, dmax = self.axis.get_data_interval() return self.raise_if_exceeds( np.arange(dmin + self.offset, dmax+1, self._base)) class FixedLocator(Locator): """ Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to keep the number of ticks <= nbins +1. The subsampling will be done so as to include the smallest absolute value; for example, if zero is included in the array of possibilities, then it is guaranteed to be one of the chosen ticks. """ def __init__(self, locs, nbins=None): self.locs = np.asarray(locs) self.nbins = nbins if self.nbins is not None: self.nbins = max(self.nbins, 2) def __call__(self): 'Return the locations of the ticks' if self.nbins is None: return self.locs step = max(int(0.99 + len(self.locs) / float(self.nbins)), 1) ticks = self.locs[::step] for i in range(1,step): ticks1 = self.locs[i::step] if np.absolute(ticks1).min() < np.absolute(ticks).min(): ticks = ticks1 return self.raise_if_exceeds(ticks) class NullLocator(Locator): """ No ticks """ def __call__(self): 'Return the locations of the ticks' return [] class LinearLocator(Locator): """ Determine the tick locations The first time this function is called it will try to set the number of ticks to make a nice tick partitioning. Thereafter the number of ticks will be fixed so that interactive navigation will be nice """ def __init__(self, numticks = None, presets=None): """ Use presets to set locs based on lom. A dict mapping vmin, vmax->locs """ self.numticks = numticks if presets is None: self.presets = {} else: self.presets = presets def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) if vmax<vmin: vmin, vmax = vmax, vmin if (vmin, vmax) in self.presets: return self.presets[(vmin, vmax)] if self.numticks is None: self._set_numticks() if self.numticks==0: return [] ticklocs = np.linspace(vmin, vmax, self.numticks) return self.raise_if_exceeds(ticklocs) def _set_numticks(self): self.numticks = 11 # todo; be smart here; this is just for dev def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' if vmax<vmin: vmin, vmax = vmax, vmin if vmin==vmax: vmin-=1 vmax+=1 exponent, remainder = divmod(math.log10(vmax - vmin), 1) if remainder < 0.5: exponent -= 1 scale = 10**(-exponent) vmin = math.floor(scale*vmin)/scale vmax = math.ceil(scale*vmax)/scale return mtransforms.nonsingular(vmin, vmax) def closeto(x,y): if abs(x-y)<1e-10: return True else: return False class Base: 'this solution has some hacks to deal with floating point inaccuracies' def __init__(self, base): assert(base>0) self._base = base def lt(self, x): 'return the largest multiple of base < x' d,m = divmod(x, self._base) if closeto(m,0) and not closeto(m/self._base,1): return (d-1)*self._base return d*self._base def le(self, x): 'return the largest multiple of base <= x' d,m = divmod(x, self._base) if closeto(m/self._base,1): # was closeto(m, self._base) #looks like floating point error return (d+1)*self._base return d*self._base def gt(self, x): 'return the smallest multiple of base > x' d,m = divmod(x, self._base) if closeto(m/self._base,1): #looks like floating point error return (d+2)*self._base return (d+1)*self._base def ge(self, x): 'return the smallest multiple of base >= x' d,m = divmod(x, self._base) if closeto(m,0) and not closeto(m/self._base,1): return d*self._base return (d+1)*self._base def get_base(self): return self._base class MultipleLocator(Locator): """ Set a tick on every integer that is multiple of base in the view interval """ def __init__(self, base=1.0): self._base = Base(base) def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() if vmax<vmin: vmin, vmax = vmax, vmin vmin = self._base.ge(vmin) base = self._base.get_base() n = (vmax - vmin + 0.001*base)//base locs = vmin + np.arange(n+1) * base return self.raise_if_exceeds(locs) def view_limits(self, dmin, dmax): """ Set the view limits to the nearest multiples of base that contain the data """ vmin = self._base.le(dmin) vmax = self._base.ge(dmax) if vmin==vmax: vmin -=1 vmax +=1 return mtransforms.nonsingular(vmin, vmax) def scale_range(vmin, vmax, n = 1, threshold=100): dv = abs(vmax - vmin) maxabsv = max(abs(vmin), abs(vmax)) if maxabsv == 0 or dv/maxabsv < 1e-12: return 1.0, 0.0 meanv = 0.5*(vmax+vmin) if abs(meanv)/dv < threshold: offset = 0 elif meanv > 0: ex = divmod(math.log10(meanv), 1)[0] offset = 10**ex else: ex = divmod(math.log10(-meanv), 1)[0] offset = -10**ex ex = divmod(math.log10(dv/n), 1)[0] scale = 10**ex return scale, offset class MaxNLocator(Locator): """ Select no more than N intervals at nice locations. """ default_params = dict(nbins = 10, steps = None, trim = True, integer=False, symmetric=False, prune=None) def __init__(self, *args, **kwargs): """ Keyword args: *nbins* Maximum number of intervals; one less than max number of ticks. *steps* Sequence of nice numbers starting with 1 and ending with 10; e.g., [1, 2, 4, 5, 10] *integer* If True, ticks will take only integer values. *symmetric* If True, autoscaling will result in a range symmetric about zero. *prune* ['lower' | 'upper' | 'both' | None] Remove edge ticks -- useful for stacked or ganged plots where the upper tick of one axes overlaps with the lower tick of the axes above it. If prune=='lower', the smallest tick will be removed. If prune=='upper', the largest tick will be removed. If prune=='both', the largest and smallest ticks will be removed. If prune==None, no ticks will be removed. """ # I left "trim" out; it defaults to True, and it is not # clear that there is any use case for False, so we may # want to remove that kwarg. EF 2010/04/18 if args: kwargs['nbins'] = args[0] if len(args) > 1: raise ValueError( "Keywords are required for all arguments except 'nbins'") self.set_params(**self.default_params) self.set_params(**kwargs) def set_params(self, **kwargs): if 'nbins' in kwargs: self._nbins = int(kwargs['nbins']) if 'trim' in kwargs: self._trim = kwargs['trim'] if 'integer' in kwargs: self._integer = kwargs['integer'] if 'symmetric' in kwargs: self._symmetric = kwargs['symmetric'] if 'prune' in kwargs: prune = kwargs['prune'] if prune is not None and prune not in ['upper', 'lower', 'both']: raise ValueError( "prune must be 'upper', 'lower', 'both', or None") self._prune = prune if 'steps' in kwargs: steps = kwargs['steps'] if steps is None: self._steps = [1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10] else: if int(steps[-1]) != 10: steps = list(steps) steps.append(10) self._steps = steps if 'integer' in kwargs: self._integer = kwargs['integer'] if self._integer: self._steps = [n for n in self._steps if divmod(n,1)[1] < 0.001] def bin_boundaries(self, vmin, vmax): nbins = self._nbins scale, offset = scale_range(vmin, vmax, nbins) if self._integer: scale = max(1, scale) vmin -= offset vmax -= offset raw_step = (vmax-vmin)/nbins scaled_raw_step = raw_step/scale best_vmax = vmax best_vmin = vmin for step in self._steps: if step < scaled_raw_step: continue step *= scale best_vmin = step*divmod(vmin, step)[0] best_vmax = best_vmin + step*nbins if (best_vmax >= vmax): break if self._trim: extra_bins = int(divmod((best_vmax - vmax), step)[0]) nbins -= extra_bins return (np.arange(nbins+1) * step + best_vmin + offset) def __call__(self): vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) locs = self.bin_boundaries(vmin, vmax) #print 'locs=', locs prune = self._prune if prune=='lower': locs = locs[1:] elif prune=='upper': locs = locs[:-1] elif prune=='both': locs = locs[1:-1] return self.raise_if_exceeds(locs) def view_limits(self, dmin, dmax): if self._symmetric: maxabs = max(abs(dmin), abs(dmax)) dmin = -maxabs dmax = maxabs dmin, dmax = mtransforms.nonsingular(dmin, dmax, expander = 0.05) return np.take(self.bin_boundaries(dmin, dmax), [0,-1]) def decade_down(x, base=10): 'floor x to the nearest lower decade' if x == 0.0: return -base lx = math.floor(math.log(x)/math.log(base)) return base**lx def decade_up(x, base=10): 'ceil x to the nearest higher decade' if x == 0.0: return base lx = math.ceil(math.log(x)/math.log(base)) return base**lx def nearest_long(x): if x == 0: return 0L elif x > 0: return long(x+0.5) else: return long(x-0.5) def is_decade(x, base=10): if not np.isfinite(x): return False if x == 0.0: return True lx = math.log(abs(x))/math.log(base) return is_close_to_int(lx) def is_close_to_int(x): if not np.isfinite(x): return False return abs(x - nearest_long(x)) < 1e-10 class LogLocator(Locator): """ Determine the tick locations for log axes """ def __init__(self, base=10.0, subs=[1.0], numdecs=4): """ place ticks on the location= base**i*subs[j] """ self.base(base) self.subs(subs) self.numticks = 15 self.numdecs = numdecs def base(self,base): """ set the base of the log scaling (major tick every base**i, i integer) """ self._base=base+0.0 def subs(self,subs): """ set the minor ticks the log scaling every base**i*subs[j] """ if subs is None: self._subs = None # autosub else: self._subs = np.asarray(subs)+0.0 def _set_numticks(self): self.numticks = 15 # todo; be smart here; this is just for dev def __call__(self): 'Return the locations of the ticks' b=self._base vmin, vmax = self.axis.get_view_interval() # dummy axis has no axes attribute if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar': vmax = math.ceil(math.log(vmax) / math.log(b)) decades = np.arange(vmax - self.numdecs, vmax) ticklocs = b ** decades return ticklocs if vmin <= 0.0: vmin = self.axis.get_minpos() if vmin <= 0.0 or not np.isfinite(vmin): raise ValueError( "Data has no positive values, and therefore can not be log-scaled.") vmin = math.log(vmin)/math.log(b) vmax = math.log(vmax)/math.log(b) if vmax<vmin: vmin, vmax = vmax, vmin numdec = math.floor(vmax)-math.ceil(vmin) if self._subs is None: # autosub if numdec>10: subs = np.array([1.0]) elif numdec>6: subs = np.arange(2.0, b, 2.0) else: subs = np.arange(2.0, b) else: subs = self._subs stride = 1 while numdec/stride+1 > self.numticks: stride += 1 decades = np.arange(math.floor(vmin), math.ceil(vmax)+stride, stride) if len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0): ticklocs = [] for decadeStart in b**decades: ticklocs.extend( subs*decadeStart ) else: ticklocs = b**decades return self.raise_if_exceeds(np.array(ticklocs)) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' b = self._base if vmax<vmin: vmin, vmax = vmax, vmin if self.axis.axes.name == 'polar': vmax = math.ceil(math.log(vmax) / math.log(b)) vmin = b ** (vmax - self.numdecs) return vmin, vmax minpos = self.axis.get_minpos() if minpos<=0 or not np.isfinite(minpos): raise ValueError( "Data has no positive values, and therefore can not be log-scaled.") if vmin <= minpos: vmin = minpos if not is_decade(vmin,self._base): vmin = decade_down(vmin,self._base) if not is_decade(vmax,self._base): vmax = decade_up(vmax,self._base) if vmin==vmax: vmin = decade_down(vmin,self._base) vmax = decade_up(vmax,self._base) result = mtransforms.nonsingular(vmin, vmax) return result class SymmetricalLogLocator(Locator): """ Determine the tick locations for log axes """ def __init__(self, transform, subs=[1.0]): """ place ticks on the location= base**i*subs[j] """ self._transform = transform self._subs = subs self.numticks = 15 def _set_numticks(self): self.numticks = 15 # todo; be smart here; this is just for dev def __call__(self): 'Return the locations of the ticks' b = self._transform.base vmin, vmax = self.axis.get_view_interval() vmin, vmax = self._transform.transform((vmin, vmax)) if vmax<vmin: vmin, vmax = vmax, vmin numdec = math.floor(vmax)-math.ceil(vmin) if self._subs is None: if numdec>10: subs = np.array([1.0]) elif numdec>6: subs = np.arange(2.0, b, 2.0) else: subs = np.arange(2.0, b) else: subs = np.asarray(self._subs) stride = 1 while numdec/stride+1 > self.numticks: stride += 1 decades = np.arange(math.floor(vmin), math.ceil(vmax)+stride, stride) if len(subs) > 1 or subs[0] != 1.0: ticklocs = [] for decade in decades: ticklocs.extend(subs * (np.sign(decade) * b ** np.abs(decade))) else: ticklocs = np.sign(decades) * b ** np.abs(decades) return self.raise_if_exceeds(np.array(ticklocs)) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' b = self._transform.base if vmax<vmin: vmin, vmax = vmax, vmin if not is_decade(abs(vmin), b): if vmin < 0: vmin = -decade_up(-vmin, b) else: vmin = decade_down(vmin, b) if not is_decade(abs(vmax), b): if vmax < 0: vmax = -decade_down(-vmax, b) else: vmax = decade_up(vmax, b) if vmin == vmax: if vmin < 0: vmin = -decade_up(-vmin, b) vmax = -decade_down(-vmax, b) else: vmin = decade_down(vmin, b) vmax = decade_up(vmax, b) result = mtransforms.nonsingular(vmin, vmax) return result class AutoLocator(MaxNLocator): def __init__(self): MaxNLocator.__init__(self, nbins=9, steps=[1, 2, 5, 10]) class AutoMinorLocator(Locator): """ Dynamically find minor tick positions based on the positions of major ticks. Assumes the scale is linear and major ticks are evenly spaced. """ def __call__(self): 'Return the locations of the ticks' majorlocs = self.axis.get_majorticklocs() try: majorstep = majorlocs[1] - majorlocs[0] except IndexError: raise ValueError('Need at least two major ticks to find minor ' 'tick locations') # see whether major step should be divided by 5, 4. This # should cover most cases. temp = float(('%e' % majorstep).split('e')[0]) if temp % 5 < 1e-10: minorstep = majorstep / 5. else: minorstep = majorstep / 4. tmin = majorlocs[0] - majorstep tmax = majorlocs[-1] + majorstep locs = np.arange(tmin, tmax, minorstep) vmin, vmax = self.axis.get_view_interval() if vmin > vmax: vmin,vmax = vmax,vmin locs = locs[(vmin < locs) & (locs < vmax)] # don't create minor ticks on top of existing major ticks diff = 0.5 * abs(locs[1] - locs[0]) locs = [l for l in locs if (np.abs(l - majorlocs) > diff).all()] return self.raise_if_exceeds(np.array(locs)) class OldAutoLocator(Locator): """ On autoscale this class picks the best MultipleLocator to set the view limits and the tick locs. """ def __init__(self): self._locator = LinearLocator() def __call__(self): 'Return the locations of the ticks' self.refresh() return self.raise_if_exceeds(self._locator()) def refresh(self): 'refresh internal information based on current lim' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) d = abs(vmax-vmin) self._locator = self.get_locator(d) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' d = abs(vmax-vmin) self._locator = self.get_locator(d) return self._locator.view_limits(vmin, vmax) def get_locator(self, d): 'pick the best locator based on a distance' d = abs(d) if d<=0: locator = MultipleLocator(0.2) else: try: ld = math.log10(d) except OverflowError: raise RuntimeError('AutoLocator illegal data interval range') fld = math.floor(ld) base = 10**fld #if ld==fld: base = 10**(fld-1) #else: base = 10**fld if d >= 5*base : ticksize = base elif d >= 2*base : ticksize = base/2.0 else : ticksize = base/5.0 locator = MultipleLocator(ticksize) return locator __all__ = ('TickHelper', 'Formatter', 'FixedFormatter', 'NullFormatter', 'FuncFormatter', 'FormatStrFormatter', 'ScalarFormatter', 'LogFormatter', 'LogFormatterExponent', 'LogFormatterMathtext', 'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator', 'LinearLocator', 'LogLocator', 'AutoLocator', 'MultipleLocator', 'MaxNLocator', )