Server : Apache System : Linux indy02.toastserver.com 3.10.0-962.3.2.lve1.5.85.el7.x86_64 #1 SMP Thu Apr 18 15:18:36 UTC 2024 x86_64 User : palandch ( 1163) PHP Version : 7.1.33 Disable Function : NONE Directory : /opt/alt/python27/lib64/python2.7/site-packages/matplotlib/ |
""" Contains a class for managing paths (polylines). """ import math from weakref import WeakValueDictionary import numpy as np from numpy import ma from matplotlib._path import point_in_path, get_path_extents, \ point_in_path_collection, get_path_collection_extents, \ path_in_path, path_intersects_path, convert_path_to_polygons, \ cleanup_path from matplotlib.cbook import simple_linear_interpolation, maxdict from matplotlib import rcParams class Path(object): """ :class:`Path` represents a series of possibly disconnected, possibly closed, line and curve segments. The underlying storage is made up of two parallel numpy arrays: - *vertices*: an Nx2 float array of vertices - *codes*: an N-length uint8 array of vertex types These two arrays always have the same length in the first dimension. For example, to represent a cubic curve, you must provide three vertices as well as three codes ``CURVE3``. The code types are: - ``STOP`` : 1 vertex (ignored) A marker for the end of the entire path (currently not required and ignored) - ``MOVETO`` : 1 vertex Pick up the pen and move to the given vertex. - ``LINETO`` : 1 vertex Draw a line from the current position to the given vertex. - ``CURVE3`` : 1 control point, 1 endpoint Draw a quadratic Bezier curve from the current position, with the given control point, to the given end point. - ``CURVE4`` : 2 control points, 1 endpoint Draw a cubic Bezier curve from the current position, with the given control points, to the given end point. - ``CLOSEPOLY`` : 1 vertex (ignored) Draw a line segment to the start point of the current polyline. Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use :meth:`iter_segments` to get the vertex/code pairs. This is important, since many :class:`Path` objects, as an optimization, do not store a *codes* at all, but have a default one provided for them by :meth:`iter_segments`. Note also that the vertices and codes arrays should be treated as immutable -- there are a number of optimizations and assumptions made up front in the constructor that will not change when the data changes. """ # Path codes STOP = 0 # 1 vertex MOVETO = 1 # 1 vertex LINETO = 2 # 1 vertex CURVE3 = 3 # 2 vertices CURVE4 = 4 # 3 vertices CLOSEPOLY = 0x4f # 1 vertex NUM_VERTICES = [1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] code_type = np.uint8 def __init__(self, vertices, codes=None, _interpolation_steps=1): """ Create a new path with the given vertices and codes. *vertices* is an Nx2 numpy float array, masked array or Python sequence. *codes* is an N-length numpy array or Python sequence of type :attr:`matplotlib.path.Path.code_type`. These two arrays must have the same length in the first dimension. If *codes* is None, *vertices* will be treated as a series of line segments. If *vertices* contains masked values, they will be converted to NaNs which are then handled correctly by the Agg PathIterator and other consumers of path data, such as :meth:`iter_segments`. *interpolation_steps* is used as a hint to certain projections, such as Polar, that this path should be linearly interpolated immediately before drawing. This attribute is primarily an implementation detail and is not intended for public use. """ if ma.isMaskedArray(vertices): vertices = vertices.astype(np.float_).filled(np.nan) else: vertices = np.asarray(vertices, np.float_) if codes is not None: codes = np.asarray(codes, self.code_type) assert codes.ndim == 1 assert len(codes) == len(vertices) if len(codes): assert codes[0] == self.MOVETO assert vertices.ndim == 2 assert vertices.shape[1] == 2 self.should_simplify = (rcParams['path.simplify'] and (len(vertices) >= 128 and (codes is None or np.all(codes <= Path.LINETO)))) self.simplify_threshold = rcParams['path.simplify_threshold'] self.has_nonfinite = not np.isfinite(vertices).all() self.codes = codes self.vertices = vertices self._interpolation_steps = _interpolation_steps @classmethod def make_compound_path_from_polys(cls, XY): """ (static method) Make a compound path object to draw a number of polygons with equal numbers of sides XY is a (numpolys x numsides x 2) numpy array of vertices. Return object is a :class:`Path` .. plot:: mpl_examples/api/histogram_path_demo.py """ # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for the # CLOSEPOLY; the vert for the closepoly is ignored but we still need # it to keep the codes aligned with the vertices numpolys, numsides, two = XY.shape assert(two==2) stride = numsides + 1 nverts = numpolys * stride verts = np.zeros((nverts, 2)) codes = np.ones(nverts, int) * cls.LINETO codes[0::stride] = cls.MOVETO codes[numsides::stride] = cls.CLOSEPOLY for i in range(numsides): verts[i::stride] = XY[:,i] return cls(verts, codes) @classmethod def make_compound_path(cls, *args): """ (staticmethod) Make a compound path from a list of Path objects. Only polygons (not curves) are supported. """ for p in args: assert p.codes is None lengths = [len(x) for x in args] total_length = sum(lengths) vertices = np.vstack([x.vertices for x in args]) vertices.reshape((total_length, 2)) codes = cls.LINETO * np.ones(total_length) i = 0 for length in lengths: codes[i] = cls.MOVETO i += length return cls(vertices, codes) def __repr__(self): return "Path(%s, %s)" % (self.vertices, self.codes) def __len__(self): return len(self.vertices) def iter_segments(self, transform=None, remove_nans=True, clip=None, snap=False, stroke_width=1.0, simplify=None, curves=True): """ Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (*vertices*, *code*), where *vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is one of the :class:`Path` codes. Additionally, this method can provide a number of standard cleanups and conversions to the path. *transform*: if not None, the given affine transformation will be applied to the path. *remove_nans*: if True, will remove all NaNs from the path and insert MOVETO commands to skip over them. *clip*: if not None, must be a four-tuple (x1, y1, x2, y2) defining a rectangle in which to clip the path. *snap*: if None, auto-snap to pixels, to reduce fuzziness of rectilinear lines. If True, force snapping, and if False, don't snap. *stroke_width*: the width of the stroke being drawn. Needed as a hint for the snapping algorithm. *simplify*: if True, perform simplification, to remove vertices that do not affect the appearance of the path. If False, perform no simplification. If None, use the should_simplify member variable. *curves*: If True, curve segments will be returned as curve segments. If False, all curves will be converted to line segments. """ vertices = self.vertices if not len(vertices): return codes = self.codes NUM_VERTICES = self.NUM_VERTICES MOVETO = self.MOVETO LINETO = self.LINETO CLOSEPOLY = self.CLOSEPOLY STOP = self.STOP vertices, codes = cleanup_path(self, transform, remove_nans, clip, snap, stroke_width, simplify, curves) len_vertices = len(vertices) i = 0 while i < len_vertices: code = codes[i] if code == STOP: return else: num_vertices = NUM_VERTICES[int(code) & 0xf] curr_vertices = vertices[i:i+num_vertices].flatten() yield curr_vertices, code i += num_vertices def transformed(self, transform): """ Return a transformed copy of the path. .. seealso:: :class:`matplotlib.transforms.TransformedPath` A specialized path class that will cache the transformed result and automatically update when the transform changes. """ return Path(transform.transform(self.vertices), self.codes, self._interpolation_steps) def contains_point(self, point, transform=None): """ Returns *True* if the path contains the given point. If *transform* is not *None*, the path will be transformed before performing the test. """ if transform is not None: transform = transform.frozen() return point_in_path(point[0], point[1], self, transform) def contains_path(self, path, transform=None): """ Returns *True* if this path completely contains the given path. If *transform* is not *None*, the path will be transformed before performing the test. """ if transform is not None: transform = transform.frozen() return path_in_path(self, None, path, transform) def get_extents(self, transform=None): """ Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the path. Unlike computing the extents on the *vertices* alone, this algorithm will take into account the curves and deal with control points appropriately. """ from transforms import Bbox path = self if transform is not None: transform = transform.frozen() if not transform.is_affine: path = self.transformed(transform) transform = None return Bbox(get_path_extents(path, transform)) def intersects_path(self, other, filled=True): """ Returns *True* if this path intersects another given path. *filled*, when True, treats the paths as if they were filled. That is, if one path completely encloses the other, :meth:`intersects_path` will return True. """ return path_intersects_path(self, other, filled) def intersects_bbox(self, bbox, filled=True): """ Returns *True* if this path intersects a given :class:`~matplotlib.transforms.Bbox`. *filled*, when True, treats the path as if it was filled. That is, if one path completely encloses the other, :meth:`intersects_path` will return True. """ from transforms import BboxTransformTo rectangle = self.unit_rectangle().transformed( BboxTransformTo(bbox)) result = self.intersects_path(rectangle, filled) return result def interpolated(self, steps): """ Returns a new path resampled to length N x steps. Does not currently handle interpolating curves. """ if steps == 1: return self vertices = simple_linear_interpolation(self.vertices, steps) codes = self.codes if codes is not None: new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, )) new_codes[0::steps] = codes else: new_codes = None return Path(vertices, new_codes) def to_polygons(self, transform=None, width=0, height=0): """ Convert this path to a list of polygons. Each polygon is an Nx2 array of vertices. In other words, each polygon has no ``MOVETO`` instructions or curves. This is useful for displaying in backends that do not support compound paths or Bezier curves, such as GDK. If *width* and *height* are both non-zero then the lines will be simplified so that vertices outside of (0, 0), (width, height) will be clipped. """ if len(self.vertices) == 0: return [] if transform is not None: transform = transform.frozen() if self.codes is None and (width == 0 or height == 0): if transform is None: return [self.vertices] else: return [transform.transform(self.vertices)] # Deal with the case where there are curves and/or multiple # subpaths (using extension code) return convert_path_to_polygons(self, transform, width, height) _unit_rectangle = None @classmethod def unit_rectangle(cls): """ (staticmethod) Returns a :class:`Path` of the unit rectangle from (0, 0) to (1, 1). """ if cls._unit_rectangle is None: cls._unit_rectangle = \ cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]], [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, cls.CLOSEPOLY]) return cls._unit_rectangle _unit_regular_polygons = WeakValueDictionary() @classmethod def unit_regular_polygon(cls, numVertices): """ (staticmethod) Returns a :class:`Path` for a unit regular polygon with the given *numVertices* and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_polygons.get(numVertices) else: path = None if path is None: theta = (2*np.pi/numVertices * np.arange(numVertices + 1).reshape((numVertices + 1, 1))) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 verts = np.concatenate((np.cos(theta), np.sin(theta)), 1) codes = np.empty((numVertices + 1,)) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes) if numVertices <= 16: cls._unit_regular_polygons[numVertices] = path return path _unit_regular_stars = WeakValueDictionary() @classmethod def unit_regular_star(cls, numVertices, innerCircle=0.5): """ (staticmethod) Returns a :class:`Path` for a unit regular star with the given numVertices and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_stars.get((numVertices, innerCircle)) else: path = None if path is None: ns2 = numVertices * 2 theta = (2*np.pi/ns2 * np.arange(ns2 + 1)) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 r = np.ones(ns2 + 1) r[1::2] = innerCircle verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose() codes = np.empty((ns2 + 1,)) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes) if numVertices <= 16: cls._unit_regular_polygons[(numVertices, innerCircle)] = path return path @classmethod def unit_regular_asterisk(cls, numVertices): """ (staticmethod) Returns a :class:`Path` for a unit regular asterisk with the given numVertices and radius of 1.0, centered at (0, 0). """ return cls.unit_regular_star(numVertices, 0.0) _unit_circle = None @classmethod def unit_circle(cls): """ (staticmethod) Returns a :class:`Path` of the unit circle. The circle is approximated using cubic Bezier curves. This uses 8 splines around the circle using the approach presented here: Lancaster, Don. `Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. """ if cls._unit_circle is None: MAGIC = 0.2652031 SQRTHALF = np.sqrt(0.5) MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0) vertices = np.array( [[0.0, -1.0], [MAGIC, -1.0], [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], [SQRTHALF, -SQRTHALF], [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], [1.0, -MAGIC], [1.0, 0.0], [1.0, MAGIC], [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], [SQRTHALF, SQRTHALF], [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], [MAGIC, 1.0], [0.0, 1.0], [-MAGIC, 1.0], [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45], [-SQRTHALF, SQRTHALF], [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45], [-1.0, MAGIC], [-1.0, 0.0], [-1.0, -MAGIC], [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45], [-SQRTHALF, -SQRTHALF], [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45], [-MAGIC, -1.0], [0.0, -1.0], [0.0, -1.0]], np.float_) codes = cls.CURVE4 * np.ones(26) codes[0] = cls.MOVETO codes[-1] = cls.CLOSEPOLY cls._unit_circle = cls(vertices, codes) return cls._unit_circle _unit_circle_righthalf = None @classmethod def unit_circle_righthalf(cls): """ (staticmethod) Returns a :class:`Path` of the right half of a unit circle. The circle is approximated using cubic Bezier curves. This uses 4 splines around the circle using the approach presented here: Lancaster, Don. `Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. """ if cls._unit_circle_righthalf is None: MAGIC = 0.2652031 SQRTHALF = np.sqrt(0.5) MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0) vertices = np.array( [[0.0, -1.0], [MAGIC, -1.0], [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], [SQRTHALF, -SQRTHALF], [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], [1.0, -MAGIC], [1.0, 0.0], [1.0, MAGIC], [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], [SQRTHALF, SQRTHALF], [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], [MAGIC, 1.0], [0.0, 1.0], [0.0, -1.0]], np.float_) codes = cls.CURVE4 * np.ones(14) codes[0] = cls.MOVETO codes[-1] = cls.CLOSEPOLY cls._unit_circle_righthalf = cls(vertices, codes) return cls._unit_circle_righthalf @classmethod def arc(cls, theta1, theta2, n=None, is_wedge=False): """ (staticmethod) Returns an arc on the unit circle from angle *theta1* to angle *theta2* (in degrees). If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. Masionobe, L. 2003. `Drawing an elliptical arc using polylines, quadratic or cubic Bezier curves <http://www.spaceroots.org/documents/ellipse/index.html>`_. """ # degrees to radians theta1 *= np.pi / 180.0 theta2 *= np.pi / 180.0 twopi = np.pi * 2.0 halfpi = np.pi * 0.5 eta1 = np.arctan2(np.sin(theta1), np.cos(theta1)) eta2 = np.arctan2(np.sin(theta2), np.cos(theta2)) eta2 -= twopi * np.floor((eta2 - eta1) / twopi) if (theta2 - theta1 > np.pi) and (eta2 - eta1 < np.pi): eta2 += twopi # number of curve segments to make if n is None: n = int(2 ** np.ceil((eta2 - eta1) / halfpi)) if n < 1: raise ValueError("n must be >= 1 or None") deta = (eta2 - eta1) / n t = np.tan(0.5 * deta) alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0 steps = np.linspace(eta1, eta2, n + 1, True) cos_eta = np.cos(steps) sin_eta = np.sin(steps) xA = cos_eta[:-1] yA = sin_eta[:-1] xA_dot = -yA yA_dot = xA xB = cos_eta[1:] yB = sin_eta[1:] xB_dot = -yB yB_dot = xB if is_wedge: length = n * 3 + 4 vertices = np.empty((length, 2), np.float_) codes = cls.CURVE4 * np.ones((length, ), cls.code_type) vertices[1] = [xA[0], yA[0]] codes[0:2] = [cls.MOVETO, cls.LINETO] codes[-2:] = [cls.LINETO, cls.CLOSEPOLY] vertex_offset = 2 end = length - 2 else: length = n * 3 + 1 vertices = np.empty((length, 2), np.float_) codes = cls.CURVE4 * np.ones((length, ), cls.code_type) vertices[0] = [xA[0], yA[0]] codes[0] = cls.MOVETO vertex_offset = 1 end = length vertices[vertex_offset :end:3, 0] = xA + alpha * xA_dot vertices[vertex_offset :end:3, 1] = yA + alpha * yA_dot vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot vertices[vertex_offset+2:end:3, 0] = xB vertices[vertex_offset+2:end:3, 1] = yB return cls(vertices, codes) @classmethod def wedge(cls, theta1, theta2, n=None): """ (staticmethod) Returns a wedge of the unit circle from angle *theta1* to angle *theta2* (in degrees). If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. """ return cls.arc(theta1, theta2, n, True) _hatch_dict = maxdict(8) @classmethod def hatch(cls, hatchpattern, density=6): """ Given a hatch specifier, *hatchpattern*, generates a Path that can be used in a repeated hatching pattern. *density* is the number of lines per unit square. """ from matplotlib.hatch import get_path if hatchpattern is None: return None hatch_path = cls._hatch_dict.get((hatchpattern, density)) if hatch_path is not None: return hatch_path hatch_path = get_path(hatchpattern, density) cls._hatch_dict[(hatchpattern, density)] = hatch_path return hatch_path _get_path_collection_extents = get_path_collection_extents def get_path_collection_extents(*args): """ Given a sequence of :class:`Path` objects, returns the bounding box that encapsulates all of them. """ from transforms import Bbox if len(args[1]) == 0: raise ValueError("No paths provided") return Bbox.from_extents(*_get_path_collection_extents(*args))