Server : Apache System : Linux indy02.toastserver.com 3.10.0-962.3.2.lve1.5.85.el7.x86_64 #1 SMP Thu Apr 18 15:18:36 UTC 2024 x86_64 User : palandch ( 1163) PHP Version : 7.1.33 Disable Function : NONE Directory : /opt/alt/python27/lib64/python2.7/site-packages/matplotlib/ |
""" The image module supports basic image loading, rescaling and display operations. """ from __future__ import division import os, warnings import numpy as np from numpy import ma from matplotlib import rcParams import matplotlib.artist as martist from matplotlib.artist import allow_rasterization import matplotlib.colors as mcolors import matplotlib.cm as cm import matplotlib.cbook as cbook # For clarity, names from _image are given explicitly in this module: import matplotlib._image as _image import matplotlib._png as _png # For user convenience, the names from _image are also imported into # the image namespace: from matplotlib._image import * from matplotlib.transforms import BboxBase, Bbox import matplotlib.transforms as mtransforms class _AxesImageBase(martist.Artist, cm.ScalarMappable): zorder = 0 # map interpolation strings to module constants _interpd = { 'nearest' : _image.NEAREST, 'bilinear' : _image.BILINEAR, 'bicubic' : _image.BICUBIC, 'spline16' : _image.SPLINE16, 'spline36' : _image.SPLINE36, 'hanning' : _image.HANNING, 'hamming' : _image.HAMMING, 'hermite' : _image.HERMITE, 'kaiser' : _image.KAISER, 'quadric' : _image.QUADRIC, 'catrom' : _image.CATROM, 'gaussian' : _image.GAUSSIAN, 'bessel' : _image.BESSEL, 'mitchell' : _image.MITCHELL, 'sinc' : _image.SINC, 'lanczos' : _image.LANCZOS, 'blackman' : _image.BLACKMAN, } # reverse interp dict _interpdr = dict([ (v,k) for k,v in _interpd.items()]) interpnames = _interpd.keys() def __str__(self): return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds) def __init__(self, ax, cmap = None, norm = None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample = False, **kwargs ): """ interpolation and cmap default to their rc settings cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 extent is data axes (left, right, bottom, top) for making image plots registered with data plots. Default is to label the pixel centers with the zero-based row and column indices. Additional kwargs are matplotlib.artist properties """ martist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) if origin is None: origin = rcParams['image.origin'] self.origin = origin self.set_filternorm(filternorm) self.set_filterrad(filterrad) self._filterrad = filterrad self.set_interpolation(interpolation) self.set_resample(resample) self.axes = ax self._imcache = None # this is an expetimental attribute, if True, unsampled image # will be drawn using the affine transform that are # appropriately skewed so that the given postition # corresponds to the actual position in the coordinate. -JJL self._image_skew_coordinate = None self.update(kwargs) def get_size(self): 'Get the numrows, numcols of the input image' if self._A is None: raise RuntimeError('You must first set the image array') return self._A.shape[:2] def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends ACCEPTS: float """ martist.Artist.set_alpha(self, alpha) self._imcache = None def changed(self): """ Call this whenever the mappable is changed so observers can update state """ self._imcache = None self._rgbacache = None cm.ScalarMappable.changed(self) def make_image(self, magnification=1.0): raise RuntimeError('The make_image method must be overridden.') def _get_unsampled_image(self, A, image_extents, viewlim): """ convert numpy array A with given extents ([x1, x2, y1, y2] in data coordinate) into the Image, given the vielim (should be a bbox instance). Image will be clipped if the extents is significantly larger than the viewlim. """ xmin, xmax, ymin, ymax = image_extents dxintv = xmax-xmin dyintv = ymax-ymin # the viewport scale factor if viewlim.width == 0.0 and dxintv == 0.0: sx = 1.0 else: sx = dxintv/viewlim.width if viewlim.height == 0.0 and dyintv == 0.0: sy = 1.0 else: sy = dyintv/viewlim.height numrows, numcols = A.shape[:2] if sx > 2: x0 = (viewlim.x0-xmin)/dxintv * numcols ix0 = max(0, int(x0 - self._filterrad)) x1 = (viewlim.x1-xmin)/dxintv * numcols ix1 = min(numcols, int(x1 + self._filterrad)) xslice = slice(ix0, ix1) xmin_old = xmin xmin = xmin_old + ix0*dxintv/numcols xmax = xmin_old + ix1*dxintv/numcols dxintv = xmax - xmin sx = dxintv/viewlim.width else: xslice = slice(0, numcols) if sy > 2: y0 = (viewlim.y0-ymin)/dyintv * numrows iy0 = max(0, int(y0 - self._filterrad)) y1 = (viewlim.y1-ymin)/dyintv * numrows iy1 = min(numrows, int(y1 + self._filterrad)) if self.origin == 'upper': yslice = slice(numrows-iy1, numrows-iy0) else: yslice = slice(iy0, iy1) ymin_old = ymin ymin = ymin_old + iy0*dyintv/numrows ymax = ymin_old + iy1*dyintv/numrows dyintv = ymax - ymin sy = dyintv/viewlim.height else: yslice = slice(0, numrows) if xslice != self._oldxslice or yslice != self._oldyslice: self._imcache = None self._oldxslice = xslice self._oldyslice = yslice if self._imcache is None: if self._A.dtype == np.uint8 and len(self._A.shape) == 3: im = _image.frombyte(self._A[yslice,xslice,:], 0) im.is_grayscale = False else: if self._rgbacache is None: x = self.to_rgba(self._A, self._alpha) self._rgbacache = x else: x = self._rgbacache im = _image.fromarray(x[yslice,xslice], 0) if len(self._A.shape) == 2: im.is_grayscale = self.cmap.is_gray() else: im.is_grayscale = False self._imcache = im if self.origin=='upper': im.flipud_in() else: im = self._imcache return im, xmin, ymin, dxintv, dyintv, sx, sy @staticmethod def _get_rotate_and_skew_transform(x1, y1, x2, y2, x3, y3): """ Retuen a transform that does (x1, y1) -> (x1, y1) (x2, y2) -> (x2, y2) (x2, y1) -> (x3, y3) It was intended to derive a skew transform that preserve the lower-left corner (x1, y1) and top-right corner(x2,y2), but change the the lower-right-corner(x2, y1) to a new position (x3, y3). """ tr1 = mtransforms.Affine2D() tr1.translate(-x1, -y1) x2a, y2a = tr1.transform_point((x2, y2)) x3a, y3a = tr1.transform_point((x3, y3)) inv_mat = 1./(x2a*y3a-y2a*x3a) * np.mat([[y3a, -y2a],[-x3a, x2a]]) a, b = (inv_mat * np.mat([[x2a], [x2a]])).flat c, d = (inv_mat * np.mat([[y2a], [0]])).flat tr2 = mtransforms.Affine2D.from_values(a, c, b, d, 0, 0) tr = (tr1 + tr2 + mtransforms.Affine2D().translate(x1, y1)).inverted().get_affine() return tr def _draw_unsampled_image(self, renderer, gc): """ draw unsampled image. The renderer should support a draw_image method with scale parameter. """ trans = self.get_transform() #axes.transData # convert the coordinates to the intermediate coordinate (ic). # The transformation from the ic to the canvas is a pure # affine transfor. # A straight-forward way is to use the non-affine part of the # original transform for conversion to the ic. # firs, convert the image extent to the ic x_llc, x_trc, y_llc, y_trc = self.get_extent() xy = trans.transform_non_affine(np.array([(x_llc, y_llc), (x_trc, y_trc)])) _xx1, _yy1 = xy[0] _xx2, _yy2 = xy[1] extent_in_ic = _xx1, _xx2, _yy1, _yy2 # define trans_ic_to_canvas : unless _image_skew_coordinate is # set, it is simply a affine part of the original transform. if self._image_skew_coordinate: # skew the image when required. x_lrc, y_lrc = self._image_skew_coordinate xy2 = trans.transform_non_affine(np.array([(x_lrc, y_lrc)])) _xx3, _yy3 = xy2[0] tr_rotate_skew = self._get_rotate_and_skew_transform(_xx1, _yy1, _xx2, _yy2, _xx3, _yy3) trans_ic_to_canvas = tr_rotate_skew+trans.get_affine() else: trans_ic_to_canvas = trans.get_affine() # Now, viewLim in the ic. It can be roated and can be # skewed. Make it big enough. x1, y1, x2, y2 = self.axes.bbox.extents trans_canvas_to_ic = trans_ic_to_canvas.inverted() xy_ = trans_canvas_to_ic.transform(np.array([(x1, y1), (x2, y1), (x2, y2), (x1, y2)])) x1_, x2_ = min(xy_[:,0]), max(xy_[:,0]) y1_, y2_ = min(xy_[:,1]), max(xy_[:,1]) viewLim_in_ic = Bbox.from_extents(x1_, y1_, x2_, y2_) # get the image, sliced if necessary. This is done in the ic. im, xmin, ymin, dxintv, dyintv, sx, sy = \ self._get_unsampled_image(self._A, extent_in_ic, viewLim_in_ic) if im is None: return # I'm not if this check is required. -JJL fc = self.axes.patch.get_facecolor() bg = mcolors.colorConverter.to_rgba(fc, 0) im.set_bg( *bg) # image input dimensions im.reset_matrix() numrows, numcols = im.get_size() im.resize(numcols, numrows) # just to create im.bufOut that # is required by backends. There # may be better solution -JJL im._url = self.get_url() renderer.draw_image(gc, xmin, ymin, im, dxintv, dyintv, trans_ic_to_canvas) def _check_unsampled_image(self, renderer): """ return True if the image is better to be drawn unsampled. The derived class needs to override it. """ return False @allow_rasterization def draw(self, renderer, *args, **kwargs): if not self.get_visible(): return if (self.axes.get_xscale() != 'linear' or self.axes.get_yscale() != 'linear'): warnings.warn("Images are not supported on non-linear axes.") l, b, widthDisplay, heightDisplay = self.axes.bbox.bounds gc = renderer.new_gc() gc.set_clip_rectangle(self.axes.bbox.frozen()) gc.set_clip_path(self.get_clip_path()) if self._check_unsampled_image(renderer): self._draw_unsampled_image(renderer, gc) else: if self._image_skew_coordinate is not None: warnings.warn("Image will not be shown correctly with this backend.") im = self.make_image(renderer.get_image_magnification()) if im is None: return im._url = self.get_url() renderer.draw_image(gc, l, b, im) gc.restore() def contains(self, mouseevent): """ Test whether the mouse event occured within the image. """ if callable(self._contains): return self._contains(self,mouseevent) # TODO: make sure this is consistent with patch and patch # collection on nonlinear transformed coordinates. # TODO: consider returning image coordinates (shouldn't # be too difficult given that the image is rectilinear x, y = mouseevent.xdata, mouseevent.ydata xmin, xmax, ymin, ymax = self.get_extent() if xmin > xmax: xmin,xmax = xmax,xmin if ymin > ymax: ymin,ymax = ymax,ymin #print x, y, xmin, xmax, ymin, ymax if x is not None and y is not None: inside = x>=xmin and x<=xmax and y>=ymin and y<=ymax else: inside = False return inside,{} def write_png(self, fname, noscale=False): """Write the image to png file with fname""" im = self.make_image() if im is None: return if noscale: numrows, numcols = im.get_size() im.reset_matrix() im.set_interpolation(0) im.resize(numcols, numrows) im.flipud_out() rows, cols, buffer = im.as_rgba_str() _png.write_png(buffer, cols, rows, fname) def set_data(self, A): """ Set the image array ACCEPTS: numpy/PIL Image A """ # check if data is PIL Image without importing Image if hasattr(A,'getpixel'): self._A = pil_to_array(A) else: self._A = cbook.safe_masked_invalid(A) if self._A.dtype != np.uint8 and not np.can_cast(self._A.dtype, np.float): raise TypeError("Image data can not convert to float") if (self._A.ndim not in (2, 3) or (self._A.ndim == 3 and self._A.shape[-1] not in (3, 4))): raise TypeError("Invalid dimensions for image data") self._imcache =None self._rgbacache = None self._oldxslice = None self._oldyslice = None def set_array(self, A): """ retained for backwards compatibility - use set_data instead ACCEPTS: numpy array A or PIL Image""" # This also needs to be here to override the inherited # cm.ScalarMappable.set_array method so it is not invoked # by mistake. self.set_data(A) def get_interpolation(self): """ Return the interpolation method the image uses when resizing. One of 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', """ return self._interpolation def set_interpolation(self, s): """ Set the interpolation method the image uses when resizing. ACCEPTS: ['nearest' | 'bilinear' | 'bicubic' | 'spline16' | 'spline36' | 'hanning' | 'hamming' | 'hermite' | 'kaiser' | 'quadric' | 'catrom' | 'gaussian' | 'bessel' | 'mitchell' | 'sinc' | 'lanczos' | ] """ if s is None: s = rcParams['image.interpolation'] s = s.lower() if s not in self._interpd: raise ValueError('Illegal interpolation string') self._interpolation = s def set_resample(self, v): """ set whether or not image resampling is used ACCEPTS: True|False """ if v is None: v = rcParams['image.resample'] self._resample = v def get_resample(self): 'return the image resample boolean' return self._resample def set_filternorm(self, filternorm): """ Set whether the resize filter norms the weights -- see help for imshow ACCEPTS: 0 or 1 """ if filternorm: self._filternorm = 1 else: self._filternorm = 0 def get_filternorm(self): 'return the filternorm setting' return self._filternorm def set_filterrad(self, filterrad): """ Set the resize filter radius only applicable to some interpolation schemes -- see help for imshow ACCEPTS: positive float """ r = float(filterrad) assert(r>0) self._filterrad = r def get_filterrad(self): 'return the filterrad setting' return self._filterrad class AxesImage(_AxesImageBase): def __str__(self): return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds) def __init__(self, ax, cmap = None, norm = None, interpolation=None, origin=None, extent=None, filternorm=1, filterrad=4.0, resample = False, **kwargs ): """ interpolation and cmap default to their rc settings cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 extent is data axes (left, right, bottom, top) for making image plots registered with data plots. Default is to label the pixel centers with the zero-based row and column indices. Additional kwargs are matplotlib.artist properties """ self._extent = extent _AxesImageBase.__init__(self, ax, cmap = cmap, norm = norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample = resample, **kwargs ) def make_image(self, magnification=1.0): if self._A is None: raise RuntimeError('You must first set the image array or the image attribute') # image is created in the canvas coordinate. x1, x2, y1, y2 = self.get_extent() trans = self.get_transform() xy = trans.transform(np.array([(x1, y1), (x2, y2), ])) _x1, _y1 = xy[0] _x2, _y2 = xy[1] transformed_viewLim = mtransforms.TransformedBbox(self.axes.viewLim, trans) im, xmin, ymin, dxintv, dyintv, sx, sy = \ self._get_unsampled_image(self._A, [_x1, _x2, _y1, _y2], transformed_viewLim) fc = self.axes.patch.get_facecolor() bg = mcolors.colorConverter.to_rgba(fc, 0) im.set_bg( *bg) # image input dimensions im.reset_matrix() numrows, numcols = im.get_size() if numrows < 1 or numcols < 1: # out of range return None im.set_interpolation(self._interpd[self._interpolation]) im.set_resample(self._resample) # the viewport translation if dxintv == 0.0: tx = 0.0 else: tx = (xmin-transformed_viewLim.x0)/dxintv * numcols if dyintv == 0.0: ty = 0.0 else: ty = (ymin-transformed_viewLim.y0)/dyintv * numrows im.apply_translation(tx, ty) l, b, r, t = self.axes.bbox.extents widthDisplay = (round(r*magnification) + 0.5) - (round(l*magnification) - 0.5) heightDisplay = (round(t*magnification) + 0.5) - (round(b*magnification) - 0.5) # resize viewport to display rx = widthDisplay / numcols ry = heightDisplay / numrows im.apply_scaling(rx*sx, ry*sy) im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5), norm=self._filternorm, radius=self._filterrad) return im def _check_unsampled_image(self, renderer): """ return True if the image is better to be drawn unsampled. """ if renderer.option_scale_image() and self.get_interpolation() == "nearest": return True else: return False def set_extent(self, extent): """ extent is data axes (left, right, bottom, top) for making image plots This updates ax.dataLim, and, if autoscaling, sets viewLim to tightly fit the image, regardless of dataLim. Autoscaling state is not changed, so following this with ax.autoscale_view will redo the autoscaling in accord with dataLim. """ self._extent = extent xmin, xmax, ymin, ymax = extent corners = (xmin, ymin), (xmax, ymax) self.axes.update_datalim(corners) if self.axes._autoscaleXon: self.axes.set_xlim((xmin, xmax), auto=None) if self.axes._autoscaleYon: self.axes.set_ylim((ymin, ymax), auto=None) def get_extent(self): 'get the image extent: left, right, bottom, top' if self._extent is not None: return self._extent else: sz = self.get_size() #print 'sz', sz numrows, numcols = sz if self.origin == 'upper': return (-0.5, numcols-0.5, numrows-0.5, -0.5) else: return (-0.5, numcols-0.5, -0.5, numrows-0.5) class NonUniformImage(AxesImage): def __init__(self, ax, **kwargs): """ kwargs are identical to those for AxesImage, except that 'interpolation' defaults to 'nearest' """ interp = kwargs.pop('interpolation', 'nearest') AxesImage.__init__(self, ax, **kwargs) self.set_interpolation(interp) def _check_unsampled_image(self, renderer): """ return False. Do not use unsampled image. """ return False def make_image(self, magnification=1.0): if self._A is None: raise RuntimeError('You must first set the image array') x0, y0, v_width, v_height = self.axes.viewLim.bounds l, b, r, t = self.axes.bbox.extents width = (round(r) + 0.5) - (round(l) - 0.5) height = (round(t) + 0.5) - (round(b) - 0.5) width *= magnification height *= magnification im = _image.pcolor(self._Ax, self._Ay, self._A, height, width, (x0, x0+v_width, y0, y0+v_height), self._interpd[self._interpolation]) fc = self.axes.patch.get_facecolor() bg = mcolors.colorConverter.to_rgba(fc, 0) im.set_bg(*bg) im.is_grayscale = self.is_grayscale return im def set_data(self, x, y, A): """ Set the grid for the pixel centers, and the pixel values. *x* and *y* are 1-D ndarrays of lengths N and M, respectively, specifying pixel centers *A* is an (M,N) ndarray or masked array of values to be colormapped, or a (M,N,3) RGB array, or a (M,N,4) RGBA array. """ x = np.asarray(x,np.float32) y = np.asarray(y,np.float32) A = cbook.safe_masked_invalid(A) if len(x.shape) != 1 or len(y.shape) != 1\ or A.shape[0:2] != (y.shape[0], x.shape[0]): raise TypeError("Axes don't match array shape") if len(A.shape) not in [2, 3]: raise TypeError("Can only plot 2D or 3D data") if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]: raise TypeError("3D arrays must have three (RGB) or four (RGBA) color components") if len(A.shape) == 3 and A.shape[2] == 1: A.shape = A.shape[0:2] if len(A.shape) == 2: if A.dtype != np.uint8: A = (self.cmap(self.norm(A))*255).astype(np.uint8) self.is_grayscale = self.cmap.is_gray() else: A = np.repeat(A[:,:,np.newaxis], 4, 2) A[:,:,3] = 255 self.is_grayscale = True else: if A.dtype != np.uint8: A = (255*A).astype(np.uint8) if A.shape[2] == 3: B = zeros(tuple(list(A.shape[0:2]) + [4]), np.uint8) B[:,:,0:3] = A B[:,:,3] = 255 A = B self.is_grayscale = False self._A = A self._Ax = x self._Ay = y self._imcache = None # I am adding this in accor with _AxesImageBase.set_data -- # examples/pylab_examples/image_nonuniform.py was breaking on # the call to _get_unsampled_image when the oldxslice attr was # accessed - JDH 3/3/2010 self._oldxslice = None self._oldyslice = None def set_array(self, *args): raise NotImplementedError('Method not supported') def set_interpolation(self, s): if s != None and not s in ('nearest','bilinear'): raise NotImplementedError('Only nearest neighbor and bilinear interpolations are supported') AxesImage.set_interpolation(self, s) def get_extent(self): if self._A is None: raise RuntimeError('Must set data first') return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1] def set_filternorm(self, s): pass def set_filterrad(self, s): pass def set_norm(self, norm): if self._A is not None: raise RuntimeError('Cannot change colors after loading data') cm.ScalarMappable.set_norm(self, norm) def set_cmap(self, cmap): if self._A is not None: raise RuntimeError('Cannot change colors after loading data') cm.ScalarMappable.set_cmap(self, cmap) class PcolorImage(martist.Artist, cm.ScalarMappable): ''' Make a pcolor-style plot with an irregular rectangular grid. This uses a variation of the original irregular image code, and it is used by pcolorfast for the corresponding grid type. ''' def __init__(self, ax, x=None, y=None, A=None, cmap = None, norm = None, **kwargs ): """ cmap defaults to its rc setting cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 Additional kwargs are matplotlib.artist properties """ martist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self.axes = ax self._rgbacache = None self.update(kwargs) self.set_data(x, y, A) def make_image(self, magnification=1.0): if self._A is None: raise RuntimeError('You must first set the image array') fc = self.axes.patch.get_facecolor() bg = mcolors.colorConverter.to_rgba(fc, 0) bg = (np.array(bg)*255).astype(np.uint8) l, b, r, t = self.axes.bbox.extents width = (round(r) + 0.5) - (round(l) - 0.5) height = (round(t) + 0.5) - (round(b) - 0.5) width = width * magnification height = height * magnification if self.check_update('array'): A = self.to_rgba(self._A, alpha=self._alpha, bytes=True) self._rgbacache = A if self._A.ndim == 2: self.is_grayscale = self.cmap.is_gray() else: A = self._rgbacache vl = self.axes.viewLim im = _image.pcolor2(self._Ax, self._Ay, A, height, width, (vl.x0, vl.x1, vl.y0, vl.y1), bg) im.is_grayscale = self.is_grayscale return im @allow_rasterization def draw(self, renderer, *args, **kwargs): if not self.get_visible(): return im = self.make_image(renderer.get_image_magnification()) gc = renderer.new_gc() gc.set_clip_rectangle(self.axes.bbox.frozen()) gc.set_clip_path(self.get_clip_path()) renderer.draw_image(gc, round(self.axes.bbox.xmin), round(self.axes.bbox.ymin), im) gc.restore() def set_data(self, x, y, A): A = cbook.safe_masked_invalid(A) if x is None: x = np.arange(0, A.shape[1]+1, dtype=np.float64) else: x = np.asarray(x, np.float64).ravel() if y is None: y = np.arange(0, A.shape[0]+1, dtype=np.float64) else: y = np.asarray(y, np.float64).ravel() if A.shape[:2] != (y.size-1, x.size-1): print A.shape print y.size print x.size raise ValueError("Axes don't match array shape") if A.ndim not in [2, 3]: raise ValueError("A must be 2D or 3D") if A.ndim == 3 and A.shape[2] == 1: A.shape = A.shape[:2] self.is_grayscale = False if A.ndim == 3: if A.shape[2] in [3, 4]: if (A[:,:,0] == A[:,:,1]).all() and (A[:,:,0] == A[:,:,2]).all(): self.is_grayscale = True else: raise ValueError("3D arrays must have RGB or RGBA as last dim") self._A = A self._Ax = x self._Ay = y self.update_dict['array'] = True def set_array(self, *args): raise NotImplementedError('Method not supported') def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends ACCEPTS: float """ martist.Artist.set_alpha(self, alpha) self.update_dict['array'] = True class FigureImage(martist.Artist, cm.ScalarMappable): zorder = 0 def __init__(self, fig, cmap = None, norm = None, offsetx = 0, offsety = 0, origin=None, **kwargs ): """ cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 kwargs are an optional list of Artist keyword args """ martist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) if origin is None: origin = rcParams['image.origin'] self.origin = origin self.figure = fig self.ox = offsetx self.oy = offsety self.update(kwargs) self.magnification = 1.0 def contains(self, mouseevent): """Test whether the mouse event occured within the image. """ if callable(self._contains): return self._contains(self,mouseevent) xmin, xmax, ymin, ymax = self.get_extent() xdata, ydata = mouseevent.x, mouseevent.y #print xdata, ydata, xmin, xmax, ymin, ymax if xdata is not None and ydata is not None: inside = xdata>=xmin and xdata<=xmax and ydata>=ymin and ydata<=ymax else: inside = False return inside,{} def get_size(self): 'Get the numrows, numcols of the input image' if self._A is None: raise RuntimeError('You must first set the image array') return self._A.shape[:2] def get_extent(self): 'get the image extent: left, right, bottom, top' numrows, numcols = self.get_size() return (-0.5+self.ox, numcols-0.5+self.ox, -0.5+self.oy, numrows-0.5+self.oy) def set_data(self, A): """ Set the image array """ cm.ScalarMappable.set_array(self, cbook.safe_masked_invalid(A)) def set_array(self, A): """ Deprecated; use set_data for consistency with other image types. """ self.set_data(A) def make_image(self, magnification=1.0): if self._A is None: raise RuntimeError('You must first set the image array') x = self.to_rgba(self._A, self._alpha) self.magnification = magnification # if magnification is not one, we need to resize ismag = magnification!=1 #if ismag: raise RuntimeError if ismag: isoutput = 0 else: isoutput = 1 im = _image.fromarray(x, isoutput) fc = self.figure.get_facecolor() im.set_bg( *mcolors.colorConverter.to_rgba(fc, 0) ) im.is_grayscale = (self.cmap.name == "gray" and len(self._A.shape) == 2) if ismag: numrows, numcols = self.get_size() numrows *= magnification numcols *= magnification im.set_interpolation(_image.NEAREST) im.resize(numcols, numrows) if self.origin=='upper': im.flipud_out() return im @allow_rasterization def draw(self, renderer, *args, **kwargs): if not self.get_visible(): return # todo: we should be able to do some cacheing here im = self.make_image(renderer.get_image_magnification()) gc = renderer.new_gc() gc.set_clip_rectangle(self.figure.bbox) gc.set_clip_path(self.get_clip_path()) renderer.draw_image(gc, round(self.ox), round(self.oy), im) gc.restore() def write_png(self, fname): """Write the image to png file with fname""" im = self.make_image() rows, cols, buffer = im.as_rgba_str() _png.write_png(buffer, cols, rows, fname) class BboxImage(_AxesImageBase): """ The Image class whose size is determined by the given bbox. """ def __init__(self, bbox, cmap = None, norm = None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample = False, **kwargs ): """ cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 kwargs are an optional list of Artist keyword args """ _AxesImageBase.__init__(self, ax=None, cmap = cmap, norm = norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample = resample, **kwargs ) self.bbox = bbox def get_window_extent(self, renderer=None): if renderer is None: renderer = self.get_figure()._cachedRenderer if isinstance(self.bbox, BboxBase): return self.bbox elif callable(self.bbox): return self.bbox(renderer) else: raise ValueError("unknown type of bbox") def contains(self, mouseevent): """Test whether the mouse event occured within the image. """ if callable(self._contains): return self._contains(self,mouseevent) if not self.get_visible():# or self.get_figure()._renderer is None: return False,{} x, y = mouseevent.x, mouseevent.y inside = self.get_window_extent().contains(x, y) return inside,{} def get_size(self): 'Get the numrows, numcols of the input image' if self._A is None: raise RuntimeError('You must first set the image array') return self._A.shape[:2] def make_image(self, renderer, magnification=1.0): if self._A is None: raise RuntimeError('You must first set the image array or the image attribute') if self._imcache is None: if self._A.dtype == np.uint8 and len(self._A.shape) == 3: im = _image.frombyte(self._A, 0) im.is_grayscale = False else: if self._rgbacache is None: x = self.to_rgba(self._A, self._alpha) self._rgbacache = x else: x = self._rgbacache im = _image.fromarray(x, 0) if len(self._A.shape) == 2: im.is_grayscale = self.cmap.is_gray() else: im.is_grayscale = False self._imcache = im if self.origin=='upper': im.flipud_in() else: im = self._imcache # image input dimensions im.reset_matrix() im.set_interpolation(self._interpd[self._interpolation]) im.set_resample(self._resample) l, b, r, t = self.get_window_extent(renderer).extents #bbox.extents widthDisplay = (round(r) + 0.5) - (round(l) - 0.5) heightDisplay = (round(t) + 0.5) - (round(b) - 0.5) widthDisplay *= magnification heightDisplay *= magnification numrows, numcols = self._A.shape[:2] # resize viewport to display rx = widthDisplay / numcols ry = heightDisplay / numrows #im.apply_scaling(rx*sx, ry*sy) im.apply_scaling(rx, ry) #im.resize(int(widthDisplay+0.5), int(heightDisplay+0.5), # norm=self._filternorm, radius=self._filterrad) im.resize(int(widthDisplay), int(heightDisplay), norm=self._filternorm, radius=self._filterrad) return im @allow_rasterization def draw(self, renderer, *args, **kwargs): if not self.get_visible(): return # todo: we should be able to do some cacheing here image_mag = renderer.get_image_magnification() im = self.make_image(renderer, image_mag) l, b, r, t = self.get_window_extent(renderer).extents gc = renderer.new_gc() self._set_gc_clip(gc) #gc.set_clip_path(self.get_clip_path()) renderer.draw_image(gc, round(l), round(b), im) gc.restore() def imread(fname, format=None): """ Return image file in *fname* as :class:`numpy.array`. *fname* may be a string path or a Python file-like object. If *format* is provided, will try to read file of that type, otherwise the format is deduced from the filename. If nothing can be deduced, PNG is tried. Return value is a :class:`numpy.array`. For grayscale images, the return array is MxN. For RGB images, the return value is MxNx3. For RGBA images the return value is MxNx4. matplotlib can only read PNGs natively, but if `PIL <http://www.pythonware.com/products/pil/>`_ is installed, it will use it to load the image and return an array (if possible) which can be used with :func:`~matplotlib.pyplot.imshow`. """ def pilread(): 'try to load the image with PIL or return None' try: import Image except ImportError: return None image = Image.open( fname ) return pil_to_array(image) handlers = {'png' :_png.read_png, } if format is None: if cbook.is_string_like(fname): basename, ext = os.path.splitext(fname) ext = ext.lower()[1:] else: ext = 'png' else: ext = format if ext not in handlers.keys(): im = pilread() if im is None: raise ValueError('Only know how to handle extensions: %s; with PIL installed matplotlib can handle more images' % handlers.keys()) return im handler = handlers[ext] # To handle Unicode filenames, we pass a file object to the PNG # reader extension, since Python handles them quite well, but it's # tricky in C. if cbook.is_string_like(fname): fname = open(fname, 'rb') return handler(fname) def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None, origin=None, dpi=100): """ Saves a 2D :class:`numpy.array` as an image with one pixel per element. The output formats available depend on the backend being used. Arguments: *fname*: A string containing a path to a filename, or a Python file-like object. If *format* is *None* and *fname* is a string, the output format is deduced from the extension of the filename. *arr*: A 2D array. Keyword arguments: *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* set the color scaling for the image by fixing the values that map to the colormap color limits. If either *vmin* or *vmax* is None, that limit is determined from the *arr* min/max value. *cmap*: cmap is a colors.Colormap instance, eg cm.jet. If None, default to the rc image.cmap value. *format*: One of the file extensions supported by the active backend. Most backends support png, pdf, ps, eps and svg. *origin* [ 'upper' | 'lower' ] Indicates where the [0,0] index of the array is in the upper left or lower left corner of the axes. Defaults to the rc image.origin value. *dpi* The DPI to store in the metadata of the file. This does not affect the resolution of the output image. """ from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure figsize = [x / float(dpi) for x in arr.shape[::-1]] fig = Figure(figsize=figsize, dpi=dpi, frameon=False) canvas = FigureCanvas(fig) im = fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin) fig.savefig(fname, dpi=dpi, format=format) def pil_to_array( pilImage ): """ load a PIL image and return it as a numpy array of uint8. For grayscale images, the return array is MxN. For RGB images, the return value is MxNx3. For RGBA images the return value is MxNx4 """ def toarray(im): 'return a 1D array of floats' x_str = im.tostring('raw',im.mode,0,-1) x = np.fromstring(x_str,np.uint8) return x if pilImage.mode in ('RGBA', 'RGBX'): im = pilImage # no need to convert images elif pilImage.mode=='L': im = pilImage # no need to luminance images # return MxN luminance array x = toarray(im) x.shape = im.size[1], im.size[0] return x elif pilImage.mode=='RGB': #return MxNx3 RGB array im = pilImage # no need to RGB images x = toarray(im) x.shape = im.size[1], im.size[0], 3 return x else: # try to convert to an rgba image try: im = pilImage.convert('RGBA') except ValueError: raise RuntimeError('Unknown image mode') # return MxNx4 RGBA array x = toarray(im) x.shape = im.size[1], im.size[0], 4 return x def thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear', preview=False): """ make a thumbnail of image in *infile* with output filename *thumbfile*. *infile* the image file -- must be PNG or PIL readable if you have `PIL <http://www.pythonware.com/products/pil/>`_ installed *thumbfile* the thumbnail filename *scale* the scale factor for the thumbnail *interpolation* the interpolation scheme used in the resampling *preview* if True, the default backend (presumably a user interface backend) will be used which will cause a figure to be raised if :func:`~matplotlib.pyplot.show` is called. If it is False, a pure image backend will be used depending on the extension, 'png'->FigureCanvasAgg, 'pdf'->FigureCanvasPDF, 'svg'->FigureCanvasSVG See examples/misc/image_thumbnail.py. .. htmlonly:: :ref:`misc-image_thumbnail` Return value is the figure instance containing the thumbnail """ basedir, basename = os.path.split(infile) baseout, extout = os.path.splitext(thumbfile) im = imread(infile) rows, cols, depth = im.shape # this doesn't really matter, it will cancel in the end, but we # need it for the mpl API dpi = 100 height = float(rows)/dpi*scale width = float(cols)/dpi*scale extension = extout.lower() if preview: # let the UI backend do everything import matplotlib.pyplot as plt fig = plt.figure(figsize=(width, height), dpi=dpi) else: if extension=='.png': from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas elif extension=='.pdf': from matplotlib.backends.backend_pdf import FigureCanvasPDF as FigureCanvas elif extension=='.svg': from matplotlib.backends.backend_svg import FigureCanvasSVG as FigureCanvas else: raise ValueError("Can only handle extensions 'png', 'svg' or 'pdf'") from matplotlib.figure import Figure fig = Figure(figsize=(width, height), dpi=dpi) canvas = FigureCanvas(fig) ax = fig.add_axes([0,0,1,1], aspect='auto', frameon=False, xticks=[], yticks=[]) basename, ext = os.path.splitext(basename) ax.imshow(im, aspect='auto', resample=True, interpolation='bilinear') fig.savefig(thumbfile, dpi=dpi) return fig