Server : Apache System : Linux indy02.toastserver.com 3.10.0-962.3.2.lve1.5.85.el7.x86_64 #1 SMP Thu Apr 18 15:18:36 UTC 2024 x86_64 User : palandch ( 1163) PHP Version : 7.1.33 Disable Function : NONE Directory : /opt/alt/python27/lib64/python2.7/site-packages/matplotlib/ |
""" This module provides a large set of colormaps, functions for registering new colormaps and for getting a colormap by name, and a mixin class for adding color mapping functionality. """ import os import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import datad cmap_d = dict() # reverse all the colormaps. # reversed colormaps have '_r' appended to the name. def _reverser(f): def freversed(x): return f(1-x) return freversed def revcmap(data): data_r = {} for key, val in data.iteritems(): if callable(val): valnew = _reverser(val) # This doesn't work: lambda x: val(1-x) # The same "val" (the first one) is used # each time, so the colors are identical # and the result is shades of gray. else: # Flip x and exchange the y values facing x = 0 and x = 1. valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)] data_r[key] = valnew return data_r LUTSIZE = mpl.rcParams['image.lut'] _cmapnames = datad.keys() # need this list because datad is changed in loop for cmapname in _cmapnames: cmapname_r = cmapname+'_r' cmapspec = datad[cmapname] if 'red' in cmapspec: datad[cmapname_r] = revcmap(cmapspec) cmap_d[cmapname] = colors.LinearSegmentedColormap( cmapname, cmapspec, LUTSIZE) cmap_d[cmapname_r] = colors.LinearSegmentedColormap( cmapname_r, datad[cmapname_r], LUTSIZE) else: revspec = list(reversed(cmapspec)) if len(revspec[0]) == 2: # e.g., (1, (1.0, 0.0, 1.0)) revspec = [(1.0 - a, b) for a, b in revspec] datad[cmapname_r] = revspec cmap_d[cmapname] = colors.LinearSegmentedColormap.from_list( cmapname, cmapspec, LUTSIZE) cmap_d[cmapname_r] = colors.LinearSegmentedColormap.from_list( cmapname_r, revspec, LUTSIZE) locals().update(cmap_d) def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not cbook.is_string_like(name): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over builtin colormaps. If *name* is a :class:`colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name with a corresponding data dictionary in *datad*. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] elif name in datad: return colors.LinearSegmentedColormap(name, datad[name], lut) else: raise ValueError("Colormap %s is not recognized" % name) class ScalarMappable: """ This is a mixin class to support scalar -> RGBA mapping. Handles normalization and colormapping """ def __init__(self, norm=None, cmap=None): """ *norm* is an instance of :class:`colors.Normalize` or one of its subclasses, used to map luminance to 0-1. *cmap* is a :mod:`cm` colormap instance, for example :data:`cm.jet` """ self.callbacksSM = cbook.CallbackRegistry(( 'changed',)) if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None self.norm = norm self.cmap = get_cmap(cmap) self.colorbar = None self.update_dict = {'array':False} def set_colorbar(self, im, ax): 'set the colorbar image and axes associated with mappable' self.colorbar = im, ax def to_rgba(self, x, alpha=None, bytes=False): '''Return a normalized rgba array corresponding to *x*. If *x* is already an rgb array, insert *alpha*; if it is already rgba, return it unchanged. If *bytes* is True, return rgba as 4 uint8s instead of 4 floats. ''' if alpha is None: _alpha = 1.0 else: _alpha = alpha try: if x.ndim == 3: if x.shape[2] == 3: if x.dtype == np.uint8: _alpha = np.array(_alpha*255, np.uint8) m, n = x.shape[:2] xx = np.empty(shape=(m,n,4), dtype = x.dtype) xx[:,:,:3] = x xx[:,:,3] = _alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if bytes and xx.dtype != np.uint8: xx = (xx * 255).astype(np.uint8) return xx except AttributeError: pass x = ma.asarray(x) x = self.norm(x) x = self.cmap(x, alpha=alpha, bytes=bytes) return x def set_array(self, A): 'Set the image array from numpy array *A*' self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats """ if (vmin is not None and vmax is None and cbook.iterable(vmin) and len(vmin)==2): vmin, vmax = vmin if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self.changed() def set_cmap(self, cmap): """ set the colormap for luminance data ACCEPTS: a colormap or registered colormap name """ cmap = get_cmap(cmap) self.cmap = cmap self.changed() def set_norm(self, norm): 'set the normalization instance' if norm is None: norm = colors.Normalize() self.norm = norm self.changed() def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True